Satellite Communications Toolbox
Reference

7

MATLAB

R2022b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Satellite Communications Toolbox Reference
© COPYRIGHT 2021-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2021 Online only New for Version 1.0 (Release 2021a)
September 2021 Online only Revised for Version 1.1 (Release 2021b)
March 2022 Online only Revised for Version 1.2 (Release 2022a)

September 2022 Online only Revised for Version 1.3 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps

1
Functions

2
Objects

3|

System Objects

4

iii

Apps

1 Apps

Satellite Link Budget Analyzer

Analyze link budgets for satellite communications

Description

The Satellite Link Budget Analyzer app enables you to analyze link budgets for satellite
communications.

Using the app, you can:

* Analyze link budgets by specifying input properties related to the location, transmitter, and

receiver characteristics of satellites and ground stations, as well as atmospheric conditions for
links.

* Design a satellite communications link to meet a minimum link margin requirement.

* Gain insight into intermediate link budget computations.

* Calculate, compare, and visualize results across a sweep of multiple parameterized design
constraints.

For more information, see “Get Started with Satellite Link Budget Analyzer App”.

dh neine Lod Busdyet dnalynes - wrtEied

b ; o S o ol L . [- 1
-y 4 - ey Al [Masge -3 "

1-2

Satellite Link Budget Analyzer

& Satefiee Link Budget Anadyzer . untatied

Open the Satellite Link Budget Analyzer App

MATLAB® Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

Satellite Link
app icon. Budget Anal...

MATLAB Command Prompt: Enter satelliteLinkBudgetAnalyzer.

Examples

Show Default Satellite Link Budget App Configuration

This example shows the default configuration that appears when you open the Satellite Link
Budget Analyzer app. The figure shows the displayed results and plots, which analyze the default
satellite communications link.

I i “ _ e ——
— S g rgen
Tag Nams L1 L2 (&]
N1 S—— 1 4
s3 > 4 @
N Lt seg 415887 ©
N 1 = 4 47
§1 s2 N ' 3 0 £
A e Fs " " '.
- N He e L g]
Y L 844 182 :
v ‘6 " 1|
B 43 40 y
Distan m
Name $1
Type Satette
P51 onuce (00) 38
P2 ptute (069
Ps3 ARude (x
s
» Hecereer
PR1 intecterer *
2 4%
) x 083 (OB
a4 et R oA (9B
Tx HPA power (GBW

The upper-left pane of the app shows the Link Canvas tab, which displays this default configuration:

Link L1 is an uplink connecting ground station G1 to satellite S1

Link L3 is a crosslink connecting satellite S3 to satellite S4

Link L2 is a downlink connecting satellite S2 to ground station G2

1-3

1 Apps

The lower-left pane of the app shows the Ground Station, Link, and Satellite tabs. In these tabs,
you can adjust the property settings for each entity in the configured links. To view or adjust the
property settings of an entity, bring that entity into focus by selecting it in the Link Canvas tab.

The center pane of the app shows the computed link budget results in the Link Budget tab.
The right pane of the app window shows these plots:

* Free-space path loss for links L1, L2, and L3 in the upper-right area (FSPL tab).

* Link margins for links L1, L2, and L3 in separate tabbed plots in the lower-right area (Margin-L1,
Margin-L2, and Margin-L3 tabs, respectively).

Configuration Including P.618 Link Availability Analysis

The app supports analyzing the satellite communications link availability through the propagation
loss model defined in Recommendation ITU-R P.618-13. For details on the P.618 propagation loss
model, see “Earth-Space Propagation Losses”.

To include ITU-R P.618 propagation losses for availability analysis, select the Include P.618 Losses
checkbox on the Budget Analyzer tab. If the MAT-files with digital maps are not available on the
path, the following dialog box appears. Click the Download and Extract button to add the required
map files to the MATLAB path.

4 Satellite Link Budget Analyzer - X

Digital map files are required for link availability analysis using P_.618
propagation loss model. To include P_618 losses in link budget
calculation, click "Download and Extract” button to add the required
map files on the MATLAB path.

Help Download and Extract Cancel

Alternatively, you can download and unpack the MAT-files by entering this code at the MATLAB
command prompt.

’

maps = exist('maps.mat','file');
p836 = exist('p836.mat', 'file');
p837 = exist('p837.mat', 'file');
p840 = exist('p840.mat', 'file');

0]

matFiles = [maps p836 p837 p84
if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz', 'file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz";
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz');
else
untar('ITURDigitalMaps.tar.gz');
end
addpath(cd);
end

If you have an already customized link budget inputs/outputs, including availability will restore the
link budget to its default inputs/outputs. A different dialog box opens up in this case where you can

1-4

Satellite Link Budget Analyzer

choose to either cancel or consent to the inclusion of ITU-R P.618 propagation losses for availability

analysis.

This figure shows the updates to the configuration in the Link Budget (tags N6, N7, and N8) and
Link (tag PL5) tabs, after the MAT-files are added to the MATLAB path.

Y - [
4 Satellite Link Eyget Analyzer - untitled

BUCGET ANALYZER

w U @ E || seecuns - L = ©] ©) & Aca PioT B
New Open Save | Customize | 7] Include P.618 Losses Analyze FSPL Margin -L1 | Mergin-12 | 7 @ Remove Pt Default
- - Input/Culpul - Layuut
LE c a: NALY PLOTS Larout |
Link Ganvas Lirk Budget
Tag Name L1 L2 L3
:1 :Dmancc{km} 3 TBGSC_‘T_A: 40915:.»,.04? 36 33.:«-04
2 Elevation (deg) 183283 13.525 41.5653
[Na |[TEIRP @BW) 2| 4| a7
S1 [Na | Polarzation loss (dE) 30103| 30103 30103
[Ns |FsPL(ag) 1860352 2053834| 2065208
|NB !Ruinalt:uuaiun(dE) f 49145! 1aazv1f 7]
N7 Tetal atmospheric losses (d3) 64961 15.2073 0
| N8 |Tctal propagation losses (dB) 1934342| 2205707| 206.5293
[N~ |Receved sclropic power (CBW) [-167.4445] 1805810 -185.5399
[0 [CiNo(dB Hz) [ea1sas| 710181 esos02
[[N11 |cmv(B) 163731 32368 182777
Ground Statbn | Lik | Sateliite [NM2 |Recewed EbiNo (dB) 141548) 10181 160592
Name L1 N13 Ir-.Targln (dB) 21546I 10 9819. 4.0592
Type Link) . .
From G1
To s
PLA Frequency (GHz) | 14) .
PL2 Bandwidtn :MH:):S | App conflguratlon
PL3 Bit rate (Mbps) | 10 including P.618
pL4 Reguirsd Eb/No (d3)| 10 propagation losses
I PLS Avallabiity f"n]! 99t ‘I
PLE Polarization mismatch (deg)| 45 I
PLT Implementation loss (d5)| 2
PL& Anienna mispointing loss ma;: 1

FSPL

Eit rate Vs Margin

Margin (dB)

Margin

Distance (km)

*
-
K]
L2
L3 |
® % Operating Point
4 6 0 10 12 14 16
Bit rate (Mbps)
L1 Margin - L2
7
/ €T Margin (dB)
4-" Operating Point
/
®
* ° w
e
Q
3 AQ A5 o0
5 10 15 20 25

Tx HPA power (dBW)

In this app, Total atmospheric losses (tag N7) calculation with P.618 propagation model
assumes the antenna type as parabolic.

Customize Inputs and Outputs

Customize the Properties and Results tabs in the Satellite Link Budget Analyzer app using the
Customize Input/Output tab.

Open the Satellite Link Budget Analyzer app. These figures show the default configuration on the
Budget Analyzer and Customize Input/Output tabs.

1-5

1 Apps

< Grtaliin Lk Budgeh deaioe - ereekd

o L Fudd Proparty Mave Acd R V e
Ul
wpr Trwlie = Db vaim o ot Fipcmis @ bt ";_'I“ e
o B AN N E
r T
T
Fmmera by] Fatlies e ety
i B 1 e [S Pr—
o
Ty ke 2] Tirlia .
:"'. L - | Ta ERP
s = u s ders men
rm sy in
| v
o Epr s war
pr T EeEgae sl
U bn [ST —
L Py A i TR R ———
] Foddig L] T Yl
B s o &
La et oy LeB
Bl e " =
& Ve P pogst 1ol e L S Semon)
Tag Karns Lmit TwrhakVaian
P11 T s ot L
m Tt T e L3 1
+ HOR e "
Ta Wit s - [
- - m

On the Customize Input/Output tab:

[,
[Eormala

[i real ek corpesl iR ! 203 201 95

- i bl bk A e UL PO PR

i RN T T

- 1 by e 1]

- T Ty S —

L) e repmal eiciudgeog corweofle shies HonTLY PO T

Es i el bl coTREeT AN MLalHTLE D) P

@ T

i A - -l - PR P

S M PR by e sk v] R -

v

-

L

Use the options in the Add New Property section to add new properties.

4 Satemee Link Budget Anadyzer - untitied - ()
BUOGET ANALYZIR
R Select Unis = | Ei u I f_’::j oF Aca Pt —:;
inchude 618 Losses Analyze A Margin - L1 | Margn - L2 | ~ Detaukt
- Loyout
o & Budpet o | Fsm
| mg Mame u L2 T - —
r N N1 Destance (k) 37805003 402150008 361380004
s} 0] s . | g 2 -
N2 Elevaton (deg) 18 2% nan 41585 ©
) Tx EIRP (GBW) 2| “| a7 g0
$1 @ Ne Polarzaton 033 (38) 100 10103 30103 i‘%
T T NS FSPL (0B 1900062 206363| 2088288 &
'—U:] [l}] L] Recened notropec power (SBW) MO0 BSS| 1653707 165 5399 gios ' . =
— T NT CNo (9B-HZ) %0 8537 o 2248 050562 o
I Y N [one) 728122 WX 827 §1w | 0
[i] | o2 | N Recened EBNG (38) 06837 1ez22ss| wos2) 178} L2 Cpaming ot
NIO | Margn (@) 86537 42288 40562 T 1 2 3 4 5 e 1
) Distance (km) x10*
Ground Staton Lk Sateise o Marg 1 Marge - L2 Marpn - L3
Name S1
Type Satette D Margn (@8) |
PS1 Lastude (oeg)| 33 e o — Operat Port|
P52 Longlude (Geg) 40 ~ 5000 !
] ARSuOe ()| 2000 .E o
Transmen None 4000 . >
¥ Recerver g 3000 °
PRY interference ioss (O0B) 2
PR2 Bx OT (@) 28 2000 -]
PR Rx feecer 08y (aB) 1 1000! 10 e _,:0 45 o |
PRE Omer R icases (3B) ° 5 10 15 20 25
Tx HPA power (GBW)

Satellite Link Budget Analyzer

* Use the options in the Add New Result section to add new results.
* Use the buttons in the Close section to accept or cancel the changes.

To delete a property or result, select it and click Delete in the respective section.

Add Customized Properties and Results

Add customized properties and results by following these steps.

1 Add a new link property, FEC code rate. In the Add New Property section of the Customize
Input/Output tab, select Link from the Type list. In the Unit box, type -. In the Default value
box, type 0.5. Click Add Property. The Link Properties section of the Properties tab now
includes FEC code rate (tag PLC1).

2 Add another link property, Coding gain. Select Link from the Type list. In the Unit box, type
dB. In the Default value box, type 4. 2. Click Add Property. The Link Properties section of the
Properties tab now includes Coding gain (tag PLC2).

3 Add anew result, Required Eb/No with FEC. In the Add New Result section of the
Customize Input/Output tab, type PL4 - PLC2 (Required Eb/No - Coding gain) in the
Formula box. In the Unit box, type dB. Click Add Result. The Results tab now includes
Required Eb/No with FEC (tag NC1).

The formula for Margin (tag N13) on the Results tab is changed to use NC1 instead of PL4.
5 In the Close section of the app toolstrip, accept all the changes.

This figure shows these updates in the Properties and Results tabs.

Salelie Linl udge Analyren - onlidee™ - Besali -
A el Link Fudze Audly i It - Resul n x
CUSTOMIZE mPUTFOUTRUT Hedi s 9«00
L e Add Property Name AddResult | R $AG
Unit
A Cancel
Typa |Satellite ¥ Default value 2 Feset Formula <2 Resct r:m e
\00 HEW PROPERTY ADD NEW RESLLT CLOSE
Properties Resdts |
Heatore to fectory Lelata Restera 10 actary Daete
I Satelita Properties iApplies Io all Satelit=s) Tea Name Unit Formula
N1 Drslanee wn saluan.mbenal nkbudgeldpp compuleCislarue(PG1, PO2. PG3. F31. P52
PGarang Stanon Fropostios {Appias B0 38 Ground Sianoni) H? Flavarian dagy salcom inlemal inkbudgetdpg compaTaFlevaron(PG, PGF, PRI PS1 FS2
3 Tx BIRA Jaw PT3-PT4 - PT1 - P12 4 FTE . 518
> Transmitter Progeries (Appies to all Satelites 8 Ground Stations) " Polerization loss 8 20 * sba(og10{zos3PLE
s FSPL E:] g1 * 963 physconst{LightSoeed) | PL1*1e8))
® Racaior Brapanac (Applss 1o Al Syelines L Graind Srarinas) MG Rain sttenustion EE] s3icom intemal. inkbudgetapp. compautaRainAtenmtion[PL3, PG, PG3, PE3
e lotal mimosphenc 15525 £ sateom inlemal inkbudgetApp somputsl sialitrLeesee(PLe, PG, P62, PLT
¥ Link Prepestios (Agplize to all Links) i Total propesetion kisses i HE+NT
Tag Name Unit Default Value N3 Receind isuliopc power 48w H3 -4 -3 -PR1-PLB
e rep— peere 1| 4 CiNo At H3 + PR? - 10°i0g Oiphyscans: (Rak 7mann) - PR3 - PRY
2 B,,.,Nd‘; MHz 5| M cN] HID - 10710g10{PL2) - 60
2 ' 107 .
a3 Bil et Vg 1| M2 Neceied EbMNe] H1D 10,\\01;‘“""\.3} 60
va e — -] Meagin] HI2 - W31 -PLT
s Svatabiry - — Ruqurred EBMNa with FEC 3]] |
A6 Polerization mismetch deg 45| If
L7 Implementation loss B 2 1r
A Antenna mispointing lcss a8 1
g Radomo loce a8 1
a1 FEC code e = (Ean P Custom additions to the
" 4 * :
e Coiry g i il | default app configuration
< >

Delete Existing Results

Delete existing link analysis results by following these steps.

1-7

1 Apps

1 In the Results tab, select Rain attenuation (tag N6) and click Delete in this tab. Repeat this
process for Total atmospheric losses (tag N7) and Total propagation losses (tag N8).

2 The formula for Received isotropic power (tag N9) on the Results tab is changed to use N5
instead of N8.

3 In the Close section of the app toolstrip, accept all the changes.

This figure shows these updates in the Results tab.

4\ Satellite Link Budget Analyzer - untitled - Properties - [m} >
wwsrovze werovreor | NS
Name Unit Add Property Mame AddResult @ S
Unit Accept Cancel
Type |Satellite ¥ | Default value 2 Reset Formula 2 Reset All
ADD NEW PROPERTY ADD NEW RESULT CLOSE -
| Properties (Results
Restore to factory Delete Restore to factory Delete
* Satellite Properties (Applies to all Satellites) Tag Name Unit Formula
N1 Distance km satcom intemal inkbudgetApp computeDistance(PG1, PG2|
* Ground Station Properties (Applies to all Ground Stations) N2 Elevation deg satcom.internal_ App. = ion(PG1, PG2
N3 Tx EIRP dBw PT3-PT4 -PT1-PT2 + PT5 - PL9
» Transmitter Properties (Applies to all Satellites & Ground Stations) N4 Polarization loss d8 20 * abs(log10(cosd(PLE))
ITns FSPL dB fspl{N1 * 1e3, physconst{LightSpeed) / (PL1"1a9))
» Receiver Properties (Applies to all Satellites & Ground Stations) Mo Received isotropic power dBw M3 - N4 - N5 - PR1 - PL8
[Tn10 CMNo dB-Hz N9 + PR2 - 10"log10(physconst{Boltzmann')) - PR3 - PR4
¥ Link Properties (Applias to all Links) N11 oM dB N10 - 10%leg 10{PL2) - 60
M. /M N10 - 10"leg 10{P! -
Tag ~ 12 Qece.wd Eb/MNo d8 0 - 10%log 10(PL3) - 60
PL1 Frequency i N13 Margin dB N12 - PL4 - PLT
PL2 Bandwidth |
PL3 Bit rate |
PL4 Required Eb/No q
PL5 Pocailability il
PLE Polarization mismatch q
PLT Implementation loss q
PL8 Antenna mispointing loss q{
PLY Rad; I -
adome loss | Custom deletion (Results tag
N6, N7, and N8 deleted)
< > < >

Create Custom Plots

Create custom 2-D line plots in the Satellite Link Budget Analyzer app for sensitivity analysis.

Add Custom 2-D Line Plots

Add customized 2-D line plots by following the steps in this example.

* On the Budget Analyzer toolstrip, click the Add Plot button in the Plots section.

* In the pop-up window, type Bit rate Vs Margin in the Name tab. Select Link in the X Type
listand Bit rate (Mbps) in the X Axis list. Select Results in the Y Type list and Margin
(dB) in the Y Axis list.

1-8

Satellite Link Budget Analyzer

+ Click Add.

A new 2-D Line Plot tab opens up next to the Budget Analyzer toolstrip. This figure shows the new
custom plot visible in the upper right corner of the app window, next to the default FSPL plot.

4\ Satellite Link Budget Analyzer - untitled - O x
BUDGET ANALYZER 2 D LINE PLOT
Name X lype| unk * | ¥ iype|Resuns -
X Range| [33333 16.6667]
Bit rate Vs Margin X Auis | 3it rate (Mbps) ¥ ¥ Auxis | Margin (dB) v
Link Canvas nk Budget FSPL Bit rate Vs Margin
Tag |Name e L2 L3
. [Ne .L|:§Ian-:e (km) 3 7865e+03 | 4.0215e+04| 3 6138e+04 12
= L3 >| sd x -
N2 Elevation ideg) 183253 135231 415853
N3 TxEIRP (4BW) 12 6 a7 10
| I I | o
S1 N4 Polarizaticn loss (dB) 30103 20102 0103 = o .
N FSeL (ak) 186u3s2 | 20o3634| 2eowe| 5
N6 |Received solropic power (dBW) -1609455| -1653737| 1655339 £ ¢
NT GiMo (4B-Hz) 908537 862255| 860502 t;
(N8 |cm(aB) 228722 184438 182777 4 L3
N9 |Recened tbiNo (a8) 206537 162255 16USYZ 5 * Operating Peint
(N0 [Margin (cB) 86537| 42255 40502 4 6 8 10 12 14 16
Bit rate (Mbps)
Ground Station Link Satellite Margin - | 1 Margin - 1 2 Margin -1 3
Name S1
)
Type Satelire / =2 Margin (dB)
PS1 Latitude (deg)| 35 Gooo ’O’ ¥ Operating Point
PS2 Longitude (dag) | 40 — 5000 "
E
P33 Altitude (kmj | 2000 = \Q
Transmiter None E 4000 ’ &
L)
¥ Recever E 3000
o
PR1 Interference loss (UB) | 2
PR2 Rx GIT (dBIK) [25 20|
PRI Rxfesderloss (d8)|1 1000 -0 s 20 25 D
PR4 Other Rx losses {d8) 1 5 10 15 20 25

Tx HPA power (dBW)

You can directly modify all the tabs (Name, X Type, X Axis, Y Type, Y Axis, and X range) that
appear in the 2-D Line Plot contextual tab.

Delete Custom Plots

Delete the custom plot by following these steps.

* Switch to the Budget Analyzer toolstrip.
* On the toolstrip, click the Remove Plot button in the Plots section.
* In the pop-up window, select the custom plot to delete and click Remove Plot.

Visibility Control for All Plots

To control the visibility of any default or custom plot, select the specific plot from the drop-down list
present in the Plots section of the Budget Analyzer toolstrip.

By default, all plots are selected and visible. To hide any plot, clear it. Reselect it to make it visible
again.

If you modify the app layout, you can click the Default Layout button on the Budget Analyzer
toolstrip to return to the default layout.

1-9

1 Apps

Note that custom plots are not saved for a session.

Parameters

BUDGET ANALYZER — Link budget configuration
tab

This figure shows the BUDGET ANALYZER tab with the factory default configuration.

dh neine Lod Busdyet dnalynes - wrtEied o x
i
.

S |] R

Use the Ground Station, Link, and Satellite tabs to adjust property settings for the link budget
entities shown in the Link Canvas tab.

Ground Station — Ground station location, transmitter, and receiver settings
tab

Select the Ground Station tab to set the location, transmitter, and receiver settings for the ground
station highlighted in the Link Canvas tab. For information about customizing satellite, ground
station, transmitter, receiver, and link properties, and the link budget result computations, see
CUSTOMIZE INPUT/OUTPUT.

Satellite — Satellite location, transmitter, and receiver settings
tab

Select the Satellite tab to set the location, transmitter, and receiver settings for the satellite
highlighted in the Link Canvas tab. For information about customizing satellite, ground station,
transmitter, receiver, and link properties, and the link budget result computations, see CUSTOMIZE
INPUT/OUTPUT.

1-10

Satellite Link Budget Analyzer

Link — Link characteristics
tab

Select the Link tab to set link characteristics for the link highlighted in the Link Canvas tab. For
information about customizing satellite, ground station, transmitter, receiver, and link properties, and
the link budget result computations, see CUSTOMIZE INPUT/OUTPUT.

Customize Input/Output — Customize input properties and computations used for output
tab

To view or customize input properties and computations used for output, on the BUDGET
ANALYZER tab, click Customize Input/Output to switch to the CUSTOMIZE INPUT/OUTPUT
tab. In the CUSTOMIZE INPUT/OUTPUT tab, you can

* Change settings of the satellite, ground station, transmitter, receiver, and link properties from the
factory default inputs

* Add and delete satellite, ground station, transmitter, receiver, and link input properties

* Add, delete, and modify formulas used to compute link budget output results

CUSTOMIZE INPUT/OUTPUT — Customize link budget computations
tab

This figure shows the CUSTOMIZE INPUT/OUTPUT tab with the factory default configuration.

dh Satelite Link Busget Anbzer

unlitled” - Reults = [m] x

Properas |Aspses 1o ol et Seatioms |

______________________________________ =

Dt Esgtore 13 factery [

In the CUSTOMIZE INPUT/OUTPUT tab, you can

» Use the Properties tab to change settings of the satellite, ground station, transmitter, receiver,
and link properties from the factory default inputs. You can also add and delete satellite, ground
station, transmitter, receiver, and link input properties. On the Properties tab, you can use the
Restore to factory button to load the factory default property configuration in the current app
session.

1-11

1 Apps

» Use the Results tab to add, delete, and modify formulas used to compute link budget output
results. On the Results tab, you can use the Restore to factory button to load the factory default
results configuration in the current app session.

Programmatic Use

satellitelLinkBudgetAnalyzer opens the Satellite Link Budget Analyzer app.

Version History
Introduced in R2021a
See Also

Functions
fspl|satelliteCNR

Objects
satelliteScenario | satelliteCNRConfig

Topics
“Get Started with Satellite Link Budget Analyzer App”

1-12

Functions

2 Functions

2-2

bocmod

Binary offset carrier modulation

Syntax

bocmod (x,m,n)
bocmod(x,m,n,halfcyclesps)
bocmod (x,m,n,halfcyclesps,phasing)

Yy
y
Yy

Description

y = bocmod(x,m,n) performs binary offset carrier (BOC) modulation on the input bits x by using a
square wave and returns the modulated symbols y. m is the square wave frequency indicator. n is the
input bit rate indicator.

By default, the phasing of the square wave is set to the phase of the sine curve.

y = bocmod(x,m,n,halfcyclesps) specifies the number of samples per half cycle of the square
wave.

y = bocmod(x,m,n,halfcyclesps,phasing) specifies the phase of the square wave.

Examples

Apply BOC Modulation Using Default Phasing

Generate a random stream of input data bits to modulate.

numBits = 5;
bits = randi([0,1],numBits,1);

Set the values of m and n for the subcarrier square wave.

. 9
“©

m= 2;
2;

n

quare wave frequency is m*1.023e6 Hz

S
Square wave input bit rate is n*1.023e6 Hz

)
“©

Modulate the input bits with the square wave using the BOC modulation technique.

sym bocmod (bits,m,n) % Default phasing is of a sine curve

sym = 20x1

P P
PR RERRPRRPR PR

bocmod

Apply BOC Modulation Using Cosine Curve Phasing

Generate a random stream of input data bits to modulate.

numBits = 10;
bits = randi([0,1],numBits,1);

Set the values of m and n for the subcarrier square wave. Also specify the number of samples per
square wave half cycle, spshc.

m=25;
n=2;
spshc = 4;

Modulate the input bits with the square wave using the BOC modulation technique.

sym = bocmod(bits,m,n,spshc,"cos");

Input Arguments

x — Input bits
column vector of binary values

Input bits, specified as a column vector of binary values.

The function maps an input bit value of 0 to +1 and an input bit value of 1 to - 1. It then multiplies the
mapped symbols with a square wave by using the BOC modulation technique.

Data Types: double | int8 | logical

m — Square wave frequency indicator
positive scalar

Square wave frequency indicator, specified as a positive scalar.

The frequency of square wave is m*1.023e6 Hz.

Note The value of 2*m/n must always be an integer. This value represents the number of square
wave half cycles per input bit, x.

Data Types: double

n — Input bit rate indicator
positive scalar

Input bit rate indicator, specified as a positive scalar.

The input bit rate is n*1.023e6 Hz.

2-3

2 Functions

2-4

Data Types: double

halfcyclesps — Number of samples per half cycle of the square wave
2 (default) | integer greater than or equal to 2

Number of samples per half cycle of the square wave, specified as an integer greater than or equal to
2.

Data Types: double | uint8

phasing — Phase of square wave
"sin" (default) | "cos"

Phase of the square wave, specified as "sin" or "cos".

* "sin" — Set the phase of the square wave to the phase of a sine curve.
* "cos" — Set the phase of the square wave to the phase of a cosine curve.

Data Types: char | string

Output Arguments

y — BOC modulated symbols
column vector

BOC modulated symbols, returned as a column vector. The length of the vector is equal to
length(x)*halfcyclesps*2*m/n. If you do not specify halfcyclesps, the value of y is 2 by default.

The data type of the returned modulated symbols is same as that of the input bits, x.

Version History
Introduced in R2022a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gnssCACode | gpsPCode

ccsdsRSEncode

ccsdsRSEncode

Encode CCSDS-compliant RS codes

Syntax

code
code
code

ccsdsRSEncode(msg, k)
ccsdsRSEncode(msg, k, 1)
ccsdsRSEncode(msg,k,1,s)

Description

code = ccsdsRSEncode(msg, k) encodes the message in msg by using a (255, k) Reed-Solomon
(RS) encoder, as defined in Consultative Committee for Space Data Systems (CCSDS) 131.0-B-3
Section 4 [1]. k is the message length. code is in dual basis form, as the function assumes that the
input to the CCSDS RS encoder is in dual basis form. For more details on dual basis representation,
see CCSDS 131.0-B-3 Section 4.4.2 [1].

For a description of CCSDS RS code construction, see “CCSDS RS Code Construction” on page 2-8.

code = ccsdsRSEncode(msg, k, i) specifies the interleaving depth, i. msg consists of i RS
message symbols of length k.

code = ccsdsRSEncode(msg, k,i,s) encodes the shortened input message of length s with
interleaving depth 1i.

Examples

Encode Message Using Full-Length CCSDS RS Encoder

Encode a message using a Consultative Committee for Space Data Systems (CCSDS) Reed-Solomon
(RS) encoder.

Specify the message length, k, and the interleaving depth, i.

39;

k =2
i 3;

Generate a column vector of random message symbols. The length of the message is product of
message length, k, and interleaving depth, 1i.

msg = randi([0 255],k*i,1);
size(msg)

ans = 1Ix2

717 1

Encode the message by using CCSDS RS encoder.

code = ccsdsRSEncode(msg,k,1i);

2-5

2 Functions

2-6

Verify that the length of the encoded codeword is 255 times the value of the interleaving depth.
size(code)
ans = 1Ix2

765 1

Encode Shortened Message Using CCSDS RS Encoder

Encode a message using a Consultative Committee for Space Data Systems (CCSDS) Reed-Solomon
(RS) encoder with message shortening.

Specify the message length, k, interleaving depth, i, and the shortened message length, s.
k
i
s

223;
2;
146;

Generate a column vector of random message bits. The length for the shortened message bits is eight
times the product of shortened message length, s, and the interleaving depth, i.

msg = logical(randi([® 1],s*i*8,1));
Encode the shortened message by using a CCSDS RS encoder.
code = ccsdsRSEncode(msg,k,1,s);

Verify that the length of the encoded codeword is equal to (8*1*(255 - k + s).

size(code)
ans = 1Ix2
2848 1

Input Arguments

msg — Input message
column vector of logical bits | column vector of integers in the range [0, 255]

Input message, specified as a column vector of logical bits or a column vector of integers in the range
[0, 255]. The size of the column vector depends on the data type of the input message.

Input Message |Size of msg

Type Data Type of msg Is Data Type of msg Is uint8 or double
logical

Full-length input |8*k k

message

ccsdsRSEncode

Input Message |[Size of msg

Type Data Type of msg Is Data Type of msg Is uint8 or double
logical

Interleaved input |8*¥k*1i k*1i

message

Shortened input |8*s*i s*i

message

Data Types: double | uint8 | logical

k — Message length
223239

Message length, specified as 223 or 239.
Data Types: double

i — Interleaving depth
1 (default) |2|3]4|5]8

Interleaving depth, specified as 1, 2, 3, 4, 5, or 8. The default value, 1, corresponds to no
interleaving.

msg consists of 1 RS message symbols of length k.

Data Types: double

s — Shortened message length
k (default) | integer in the range [1, k]

Shortened message length, specified as an integer in the range [1, k].

Data Types: double

Output Arguments

code — CCSDS RS encoded message
column vector

CCSDS RS encoded message, returned as a column vector. The data type of code is same as that of
the input message, msg. The size of the column vector depends on the data type of the input message.

Input Message |[Size of code

Type Data Type of msg Is Data Type of msg Is uint8 or double
logical

Full length input |8%¥255 255

message

Interleaved input |8*255*%1 255%1

message

Shortened input [8*i*(255- K + s) i*¥(255 -k + s)

message

2-7

2 Functions

2-8

More About
CCSDS RS Code Construction

CCSDS RS codes are powerful burst error-correcting codes used as forward error-correcting (FEC)
codes.

The CCSDS RS encoder accepts full-length or shortened messages.
Construction of Full-Length Message CCSDS RS Codes

For full-length input messages the input column vector length is a product of the interleaving depth

(i) and the message length (k).

Encoding in CCSDS RS codes is done row-wise. The encoding results in an i-by-n vector that includes
parity bits added to the end of each row. n is the codeword length, which is fixed to 255 symbols
according to CCSDS 131.0-B-3 Section 4 [1].

Construction of Shortened Message CCSDS RS Codes
For shortened input messages, the input column vector length is a product of the interleaving depth

(i) and the shortened message length (s). The shortened message vector prepends padding the
beginning of the message vector with zeros. The resulting vector is an i-by-k vector.

Encoding in CCSDS RS codes is done row-wise. The encoding results in an i-by-n vector that includes
parity bits added to the end of each row.

Version History
Introduced in R2021a

References

[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.
CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsRSDecode

Objects
ccsdsTMwWaveformGenerator | comm.RSEncoder

ccsdsRSDecode

ccsdsRSDecode

Decode CCSDS-complaint RS codes

Syntax

[decoded, cnumerr, ccode]
[decoded, cnumerr, ccode]
[decoded, cnumerr, ccode]

ccsdsRSDecode(code, k)
ccsdsRSDecode(code, k, 1)
ccsdsRSDecode(code, k,1i,s)

Description

[decoded, cnumerr,ccode] = ccsdsRSDecode(code, k) decode the received signal in code by
using a (255, k) Reed-Solomon (RS) decoder with the generator polynomial, as defined in the
Consultative Committee for Space Data Systems (CCSDS) 131.0-B-3 Section 4 [1]. k is the number of
symbols in the decoded message. The function returns the decoded message code, decoded, the
number of corrected errors, cnumerr, and the corrected version of code, ccode.

For a description of CCSDS RS code decoding, see “CCSDS RS Code Decoding” on page 2-12.

[decoded, cnumerr,ccode] = ccsdsRSDecode(code, k, 1) specifies the interleaving depth, 1.
code consists of i RS codewords of length 255 bytes.

[decoded, cnumerr,ccode] = ccsdsRSDecode(code, k,1i,s) specifies the shortened message
length, s.

Examples

Encode and Decode Full-length CCSDS RS Encoded Message

Generate a full-length encoded Reed-Solomon (RS) codeword, introduce random errors, and decode
the result using a Consultative Committee for Space Data Systems (CCSDS) RS decoder.

Generate a random message of length k.

k = 223;
msg = randi([0 255],k,1);

Encode the message by using a CCSDS RS encoder.

code = ccsdsRSEncode(msg, k) ;

Generate 15 random error symbols and 15 unique random locations to insert these errors.
err = randi([1 255],15,1);

errLoc = randperm(255,15);

errVec = zeros(255,1);

errVec(errLoc) = err;

Introduce error symbols in the encoded message.

rxBytes = bitxor(code,errVec);

2-9

2 Functions

2-10

Decode the encoded symbols introduced with errors by using CCSDS RS decoder.
[decoded,v,ccode] = ccsdsRSDecode(rxBytes, k);

Display the number of corrected errors.

disp(v)

15

Decode CCSDS RS Codeword with Burst Errors

Generate an full-length encoded Reed-Solomon (RS) codeword, introduce burst of erros, and decode
the result using a Consultative Committee for Space Data Systems (CCSDS) RS decoder.

Specify the message length k and interleaving depth, i.

k
i

239;
5;

Generate a column vector of random message bits. Encode the shortened message by using a CCSDS
RS encoder.

msg = randi([0 255],k*i,1);
code = ccsdsRSEncode(msg,k,1);

Generate 30 random error symbols.

err = randi([1 2551,30,1);
errVec = zeros(255*i,1);

Introduce burst errors from location 52 to 81.

errVec(52:81) = err;
rxBytes = bitxor(code,errVec);

Decode the encoded symbols introduced with burst errors by using a CCSDS RS decoder.

[decoded,v,ccode] = ccsdsRSDecode(rxBytes,k,1i);

Display the number of corrected errors.
disp(v)
30

Input Arguments

code — Encoded message
column vector of integers in the range [0, 255]

Encoded message, specified as a column vector of integers in the range [0, 255].

The elements and the size of the column vector depends on the data type of the input message.

ccsdsRSDecode

» For a logical data type, each element in the vector is either 0 or 1.

» For a uint8 or double data type, each element is an integer symbol in GF(2™), in the range [0,
255]. m is the number of bits in each symbol.

Input Message |Size of code

Type Data Type of code Is Data Type of code Is uint8 or double
logical

Full length input |8*¥255 255

message

Interleaved input |8*¥255*1 255*1

message

Shortened input [8*i*(255 -k + s) i¥(255 -k + s)

message

Data Types: double | uint8 | logical

k — Number of symbols in decoded message
2231239

Number of symbols in the decoded message, specified as 223 or 239.

Data Types: double

i — Interleaving depth
1 (default) [2|3]4|5]8

Interleaving depth, specified as 1, 2, 3, 4, 5, or 8. The default value, 1, corresponds to no
interleaving.

code consists of i RS codewords of length 255 bytes.
Data Types: double

s — Shortened message length
k (default) | integer in the range [1, k]

Shortened message length, specified as an integer in the range [1, k].

Data Types: double

Output Arguments

decoded — Decoded message
column vector

Decoded message, returned as a column vector. Each element represents decoding the corresponding
element in input code. The data type of decoded is the same as that of code.

The size of the column vector depends on the data type of code.

2-11

2 Functions

2-12

Input Message |Size of decoded

Type Data Type of code Is Data Type of code Is uint8 or double
logical

Full length input |8*k k

message

Interleaved input |8*k*1i k*i

message

Shortened input |8*s*i s*i

message

When the value of output cnumerr is —1, decoded is equal to the first k elements of code.

cnumerr — Number of corrected errors
integer in the range [-1, (n - k) / 2]

Number of corrected errors, returned as an integer in the range [-1, (n - k) / 2], where n is the
codeword length. The value of n is set to 255 according to CCSDS 131.0-B-3 Section 4 [1].

A value of —1 in cnumerr indicates the failure of the decoder to correct the errors.

ccode — Corrected version of code
column vector

Corrected version of code, returned as a column vector. The length of ccode is same as the length of
code. The data type of ccode is the same as that of code.

When the value of output cnumerr is —1, ccode is equal to code.

More About
CCSDS RS Code Decoding

CCSDS RS codes are powerful burst error-correcting codes. These are most commonly used as
forward error-correcting (FEC) codes, as they detects and correct errors on the symbol level.

Decoding Full-Length Message CCSDS RS Codes

Like encoding, decoding of CCSDS RS codes is also done row-wise. The input vector length is a
product of interleaving depth (i) and codeword length (n). n is fixed to 255 symbols according to
CCSDS 131.0-B-3 Section 4 [1]. The input vector is composed of message and parity symbols.

Decoding Shortened Message CCSDS RS Codes

Like encoding, the decoding of CCSDS RS codes is also done row-wise. The input vector length is a
product of the interleaving depth (i) and the value calculated by n-k+s. The input vector is composed
of shortened message and parity symbols.

Version History
Introduced in R2021a

ccsdsRSDecode

References

[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.
CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsRSEncode

Objects
ccsdsTMWaveformGenerator | comm.RSDecoder

2-13

2 Functions

2-14

ccsdsSCPPMEncode

Encode CCSDS-compliant SCPPM codes

Syntax

sym = ccsdsSCPPMEncode(msg,m)
[sym,info] = ccsdsSCPPMEncode(msg,m)

Description

sym = ccsdsSCPPMEncode (msg,m) encodes the message in msg by using a serially concatenated
pulse position modulation (SCPPM) encoder, as defined by the Consultative Committee for Space
Data Systems (CCSDS) 142.0-B-1 section 3.8 [1]. m is the modulation order.

[sym,info] = ccsdsSCPPMEncode(msg,m) also returns the outer convolutional encoder
information info.

Examples

Encode Message for Single Frame Using CCSDS SCPPM Encoder
Encode a message for a single frame using a CCSDS SCPPM encoder.

Use a comm.CRCGenerator System object™ to generate CRC code bits and append these bits to the
input data.

Note: As specified in CCSDS 142.0-B-1 section 3.6:

* Fix the generator polynomial for the CRC algorithm to "X*32+x"29+x"18+x"14+x"3+1".
* Set the initial states of the internal shift register to 1.

infoSize = 7526; % Information block size without CRC
crc32Generator = comm.CRCGenerator(...
Polynomial = "Xx"32+x"29+x"18+x"14+x"3+1",
InitialConditions = 1);
crcIn = randi([0 1],infoSize,1);
crcOut = crc32Generator(crcIn); % Codeword frame with CRC bits appended

Add termination bits to terminate the outer convolutional encoder, as specified in CCSDS 142.0-B-1
section 3.7.

msg = [crcOut; 0; 0];
Specify the modulation order, and then encode the message using the CCSDS SCPPM encoder.

m=6;
[sym,info] = ccsdsSCPPMEncode(msg,m);

Display the outer convolutional encoder information info.

info

ccsdsSCPPMEncode

info = struct with fields:
OuterEncoderCodeRate: "1/2"
OuterEncoderPuncturePattern: [1 1 0 1 1 0]

Encode Message for Multiple Frames Using CCSDS SCPPM Encoder

Encode a message for multiple frames with constant frame length and modulation order using a
CCSDS SCPPM encoder.

Use a comm.CRCGenerator System object™ to generate CRC code bits and append these bits to the
input data.

Note: As specified in CCSDS 142.0-B-1 section 3.6:

* Fix the generator polynomial for the CRC algorithm to "X"32+x"29+x"18+x"14+x"3+1".
» Set the initial states of the internal shift register to 1.

infoSize = 10046; % Information block size without CRC
numFrames = 10;
m= 8; % Modulation order

data = randi([0 1],infoSize,numFrames);
crc32Generator = comm.CRCGenerator(...
Polynomial = "x"32+x"29+x"18+x"14+x"3+1",
InitialConditions = 1);
sym = zeros(15120/m,numFrames) ;

Generate CRC and add termination bits to encode the message using the CCSDS SCPPM encoder.

for frmIdx = l:numFrames
crcData = crc32Generator(data(:,frmIdx));
msgIn = [crcData; 0; 0];
sym(:,frmIdx) = ccsdsSCPPMEncode(msgIn,m);
end

Generate CRC
Add termination bits

)
“
)

%

Input Arguments

msg — Input message
binary column vector

Input message, specified as a binary column vector of length 5040, 7560, or 10080 bits. The input
message includes both cyclic redundancy check (CRC) and termination bits, as described in CCSDS
142.0-B-1 sections 3.6 and 3.7 [1].

Data Types: double | int8 | logical

m — Modulation order
integer in range [2, 8]

Modulation order, specified as an integer in the range [2, 8]. This value specifies the number of bits
mapped to one constellation symbol.

Data Types: double | uint8

2-15

2 Functions

2-16

Output Arguments

sym — CCSDS SCPPM encoded message
column vector

CCSDS SCPPM encoded message, returned as a column vector. The data type of the encoded
message depends on the input message data type.

* Ifmsg is of data type double, sym is of data type double.
* Ifmsgis of data type logical or int8, symis of data type uint8.

The length of this column vector is fixed to 15120 / m.
Data Types: double | uint8

info — Outer convolutional encoder information
structure

Outer convolutional encoder information, returned as a structure with these fields.

Structure Field Description

OuterEncoderCodeRate Outer convolutional encoder code rate, returned
as a string scalar.

OuterEncoderPuncturePattern Outer convolutional encoder puncture pattern,
returned as a logical vector of these six elements
in order: [P, P, P, P; P, Ps], as described in
CCSDS 142.0-B-1 section 3.8.2.3.1 [1].

Data Types: struct

Version History
Introduced in R2022b

References
[1] The Consultative Committee for Space Data Systems. Optical Communications Coding and

Synchronization, Recommended Standard, Issue 1. CCSDS 142.0-B-1. Washington, D.C.:
CCSDS, August 2019. https://public.ccsds.org/Pubs/142x0b1.pdf.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ccsdsRSEncode | ccsdsRSDecode | ccsdsSCPPMDecode

https://public.ccsds.org/Pubs/142x0b1.pdf

ccsdsSCPPMDecode

ccsdsSCPPMDecode

Decode CCSDS-compliant SCPPM codes

Syntax

[decoded, crcErr]
[decoded, crcErr]

ccsdsSCPPMDecode(code, r,m)
ccsdsSCPPMDecode(code, r,m,maxIter)

Description

[decoded, crcErr] ccsdsSCPPMDecode (code, r,m) decodes the soft bits in code using a
Consultative Committee for Space Data Systems (CCSDS)-compliant serially concatenated pulse
position modulation (SCPPM) decoder, as defined in the Coded Modulation for the Deep-Space
Optical Channel, volume 42-161 section III.A [1]. r is the outer convolutional encoder code rate and m
is the modulation order. The function returns the decoded data decoded which includes the cyclic
redundancy check (CRC) and termination bits. The function also returns the CRC error status
crcErr.

[decoded,crcErr] = ccsdsSCPPMDecode(code, r,m,maxIter) also specifies the maximum
number of decoding iterations.

Examples

Transmit and Decode CCSDS SCPPM Encoded Data

Transmit CCSDS SCPPM encoded data over a noiseless channel, and then decode this data using a
CCSDS SCPPM decoder with a maximum of eight decoding iterations.

Encode a message using a CCSDS SCPPM encoder for a single frame. Use a comm.CRCGenerator
System object™ to generate CRC code bits and append these bits to the input data.

Note: As specified in CCSDS 142.0-B-1 section 3.6:

* Fix the generator polynomial for the CRC algorithm to "X"32+x"29+x"18+Xx"14+x"3+1".
» Set the initial states of the internal shift register to 1.

infoSize = 7526; % Information block size without CRC
crc32Generator = comm.CRCGenerator(...
Polynomial = "x"32+x"29+x"18+x"14+x"3+1",

InitialConditions = 1);
crcIn = randi([0 1],infoSize,1);
crcOut = crc32Generator(crcln); % Codeword frame with CRC bits appended
Add termination bits to terminate the outer convolutional encoder.
msg = [crcOut; 0; 0O];

Specify the modulation order, and then encode the message using the CCSDS SCPPM encoder.

2-17

2 Functions

mod = 6;
[sym,info] = ccsdsSCPPMEncode(msg,mod);

Display the outer convolutional encoder information info.
info

info = struct with fields:
OuterEncoderCodeRate: "1/2"
OuterEncoderPuncturePattern: [1 1 0 1 1 0]

Modulate the data using the M-ary pulse position modulation (PPM) technique, and pass the
modulated data through a noiseless channel.

M = 2”mod; % M-ary PPM

modData = zeros(length(sym)*M,1);

mapIdx = (0:length(sym)-1)'*M + sym + 1; % Modulate data

modData(mapIdx) = 1;

code = 2*modData - 1; % Pass through noiseless channel

Set the maximum number of decoding iterations to eight. Decode the encoded SCPPM data.
maxIter = 8;

r = info.OuterEncoderCodeRate;

decoded = ccsdsSCPPMDecode(code, r,mod,maxIter);

Display the total number of bit errors in the decoded data.

fprintf("Number of bit errors = %f\n",sum(msg~=decoded));

Number of bit errors = 0.000000

Input Arguments

code — Encoded soft bits
column vector

Encoded soft bits, specified as a column vector.

The function considers negative soft input bits to be 0s and positive soft input bits to be 1s.

Data Types: double

r — Outer convolutional encoder code rate
II1/3II | II1/2II | II2/3II

Outer convolutional encoder code rate, specified as "1/3", "1/2", or "2/3".

Data Types: char | string

m — Modulation order
integer in the range [2, 8]

Modulation order, specified as an integer in the range [2, 8]. This value specifies the number of bits
mapped to one constellation symbol.

Data Types: double | uint8

2-18

ccsdsSCPPMDecode

maxIter — Maximum number of decoding iterations
10 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.

Data Types: double | uint8

Output Arguments

decoded — Decoded information bits
binary column vector

Decoded information bits, returned as a binary column vector. This data includes CRC and
termination bits.

Data Types: int8

crcErr — CRC error status
falseorO|trueorl

CRC error status, returned as one of these numeric or logical values.

* 0 (false) — Returned when early termination using CRC passes.

* 1 (true) — Returned when CRC fails after completing the maximum number of decoding
iterations.

Data Types: logical

Version History
Introduced in R2022b

References

[1] Moision, B., and J. Hamkins. "Coded Modulation for the Deep-Space Optical Channel: Serially
Concatenated Pulse-Position Modulation." The Interplanetary Network Progress Report, vol.
42-161 (May 15, 2005): 1-25. https://ipnpr.jpl.nasa.gov/progress report/42-161/161T.pdf.

[2] The Consultative Committee for Space Data Systems. Optical Communications Coding and

Synchronization, Recommended Standard, Issue 1. CCSDS 142.0-B-1. Washington, D.C.:
CCSDS, August 2019. https://public.ccsds.org/Pubs/142x0b1.pdf.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ccsdsSCPPMEncode | ccsdsRSDecode | ccsdsRSEncode

2-19

https://ipnpr.jpl.nasa.gov/progress_report/42-161/161T.pdf
https://public.ccsds.org/Pubs/142x0b1.pdf

2 Functions

2-20

ccsdsTCldealReceiver

Ideal receiver for CCSDS TC waveform

Syntax

bits
bits

ccsdsTCIdealReceiver(waveform,cfg)
ccsdsTCIdealReceiver(waveform, cfg,Name,Value)

Description

bits = ccsdsTCIdealReceiver(waveform, cfg) recovers transfer frames from a Consultative
Committee for Space Data Systems (CCSDS) Telecommand (TC) waveform, generated using the
ccsdsTCWaveform function. Output bits is the recovered bits for the given format configuration
cfg.

bits = ccsdsTCIdealReceiver(waveform,cfg,Name,Value) specifies options using one or
more name-value pairs. For example, 'NoiseVariance', le-11 specifies the noise variance of
additive white Gaussian noise (AWGN) on the received waveform as le-11.

Examples

Recover Transfer Frame from CCSDS TC Waveform

Recover the transfer frame from the Consultative Committee for Space Data Systems (CCSDS)
Telecommand (TC) waveform.

Create a CCSDS TC object and specify the object properties.

cfg = ccsdsTCConfig;
cfg.HasRandomizer = 1;
cfg.SamplesPerSymbol = 12;
disp(cfg)

ccsdsTCConfig with properties:

DataFormat: "CLTU"
ChannelCoding: "BCH"
HasRandomizer: 1

Modulation: "PCM/PSK/PM"

PCMFormat: "NRZ-L"
ModulationIndex: 0.4000
SubcarrierFrequency: 16000
SymbolRate: 4000
SamplesPerSymbol: 12

Read-only properties:
SubcarrierWaveform: "sine"

Specify the transfer frame length and generate the CCSDS TC waveform for the transfer frame.

ccsdsTCldealReceiver

transferFrameLength = 12; % Number of octets in each transfer frame
data = randi([0 1],8*transferFrameLength,1l); % bits in the transfer frame
waveform = ccsdsTCWaveform(data,cfg);

Recover the transfer frame from the CCSDS TC waveform

decodedBits = ccsdsTCIdealReceiver(waveform,cfg, 'DecodingMode’, "error detecting");

Check if the transfer frame is recovered successfully.

rxBits = decodedBits{1l};
bits = rxBits((1l:8*transferFramelLength)');
isequal(bits,data)

ans = logical
1

Input Arguments

waveform — Received time-domain signal
column vector

Received time-domain signal, consisting of complex in-phase quadrature (IQ) samples, specified as a
column vector. The waveform input is a CCSDS TC waveform.

A CCSDS TC waveform can contain one or more communications link transmission units (CLTUs).
Each CLTU can contain one or more transfer frames.

Data Types: single | double

Complex Number Support: Yes

cfg — Format configuration object
ccsdsTCConfig object

Format configuration object, specified as ccsdsTCConfig object. The properties of this object
determine the parameters required for CCSDS TC waveform generation and reception.

Name-Value Pair Arguments
Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: ccsdsTCIdealReceiver(waveform,cfg, 'NoiseVariance', le-11) specifies the
noise variance of AWGN on the received waveform as le-11.

NoiseVariance — Noise variance of AWGN
le-10 (default) | positive scalar

Noise variance of AWGN that is added to the input IQ symbols of the waveform, specified as a
positive scalar.

2-21

2 Functions

2-22

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "LDPC".
Data Types: double

DecodingMode — Decoding mode
"error correcting" (default) | "error detecting"

Decoding mode to decode the Bose Chaudhuri Hocquenghem (BCH) encoded codewords, specified as
"error correcting" or "error detecting".

'DecodingMode’ defines the allowed number of errors in the start sequence of the CLTU. In error
detecting mode, the allowed number of errors in the start sequence is zero. In error correcting mode,
the allowed number of errors in the start sequence is one.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "BCH".
Data Types: char | string

DetectionThreshold — Threshold to detect start sequence
0.7 (default) | scalar in the range [0.5, 1]

Threshold to detect the start sequence, by calculating the normalized correlation metric with the
known start sequence, specified as a scalar in the range [0.5, 1]. When the computed normalized
correlation metric is greater than or equal to 'DetectionThreshold’, the start sequence of the
CLTU is detected.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "LDPC".
Data Types: double

Output Arguments

bits — Recovered transfer frames
cell array of column vectors

Recovered transfer frames, returned as a cell array of column vectors. Each element of the cell array
is of data type int8.

Bits in the cell array of one or more column vectors, corresponds to the number of CLTUs present in
the waveform input. Recovered transfer frames of CLTUs can contain fill bits. The fill bits removal
procedure is not performed in the TC synchronization and channel coding sublayer.

Data Types: int8 | cell

Version History
Introduced in R2021a

ccsdsTCldealReceiver

References

[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."
Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsTCWaveform

Objects
ccsdsTCConfig

2-23

2 Functions

dvbrcs2TurboEncode

Encode DVB-RCS2-compliant turbo codes

Syntax

code = dvbrcs2TurboEncode(msg, r,permparams)

Description

code = dvbrcs2TurboEncode(msg, r,permparams) encodes the message msg by using a Digital
Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2) standard-
compliant duo-binary turbo encoder, as defined in ETSI EN 301 545-2 V1.2.1 Section 7.3.5.1 [1]. ris
the code rate, and permparams specifies the permutation control parameters that the function uses
to interleave the input message. Output code contains the DVB-RCS2-encoded message.

Examples

Encode Message Using DVB-RCS2 Turbo Encoder

Encode a message using a Digital Video Broadcasting Second Generation Return Channel over
Satellite (DVB-RCS2) duo-binary turbo encoder, with constant code rate and frame length.

Specify the frame length, code rate, and permutation control parameters.
frameLen = 40*8; % Payload length in bits

r. = n 3/4" ;

permParams = [17 9 5 14 1];

Generate a column vector of random binary data.

msg = randi([0@ 11,framelLen,l);

Encode the message by using DVB-RCS2 turbo encoder.

code = dvbrcs2TurboEncode(msg, r,permParams) ;

Encode Message Using DVB-RCS2 Turbo Encoder with Variable Code Rates and Frame
Lengths

Encode a message using a Digital Video Broadcasting Second Generation Return Channel over
Satellite (DVB-RCS2) duo-binary turbo encoder, with variable code rates and frame lengths.

Specify the frame lengths, code rates, and permutation control parameters.
frameLen = [10*8 100*8 49*8]; % Payload length in bits
r={'1/3","1/2",'2/3"};

permParams = [31 1 3 4 2];

2-24

dvbrcs2TurboEncode

Generate the column vectors of binary data and encode the message using DVB-RCS2 turbo encoder.

% Initialize output as a 3-by-1 cell array
code = cell(length(r),1);
for frmIdx = 1l:1length(framelLen)
msg = randi([0@ 1], frameLen(frmIdx),1);
code{frmIdx} = dvbrcs2TurboEncode(msg, r{frmIdx},permParams);
end

Input Arguments

msg — Input message
binary-valued column vector

Input message, specified as a binary-valued column vector. The length of this column vector must be
in the range [1, 65,535] bytes.

Data Types: double | int8 | logical

r — Code rate
II1/3II | II1/2II | II2/3II | II3/4II | II4/5II | II5/6II | II6/7II | II7/8II

Code rate, specified as one of these values.

. "1/3"
. 172"
. "2/3"
. "3/4"
. "4/5"
. "5/6"
. "6/7"
.« "7/8"

Data Types: char | string

permparams — Permutation control parameters
vector

Permutation control parameters that the function uses to interleave the input message, specified as a
vector of these five elements in order: P, Q,, Q;, Q,, and Qs. P must be in the range [9, 255], and Q,,
Q,, Q,, and Q3 must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be coprime to half of the length of the
input msg.

Data Types: double | uint8

Output Arguments

code — DVB-RCS2-encoded message
binary-valued column vector

2-25

2 Functions

DVB-RCS2-encoded message, returned as a binary-valued column vector. The data type of the code is
same as that of the input msg.

Data Types: double | int8 | Logical

Version History
Introduced in R2021b

References

[1]1 EN 301 545-2 - V1.2.1. Digital Video Broadcasting (DVB); Second Generation DVB Interactive
Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellite standard (etsi.org).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
dvbrcs2TurboDecode

Objects
dvbrcs2WaveformGenerator | comm.TurboEncoder

2-26

dvbrcs2TurboDecode

dvbrcs2TurboDecode

Decode DVB-RCS2-compliant turbo codes

Syntax

decoded = dvbrcs2TurboDecode(code, r,permparams)

decoded = dvbrcs2TurboDecode(code, r,permparams,numiter)
Description

decoded = dvbrcs2TurboDecode(code, r,permparams) decodes the soft bits in code by using
a Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2) standard-
compliant duo-binary turbo decoder, as defined in ETSI EN 301 545-2 V1.2.1 Section 7.3.5.1 [1]. ris
the code rate, and permparams are the permutation control parameters that the function uses to
interleave the input soft bits data.

decoded = dvbrcs2TurboDecode(code, r,permparams,numiter) specifies the number of
decoding iterations.

Examples

Transmit and Decode DVB-RCS2 Encoded Data

Transmit a Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2)
encoded signal through an additive white Gaussian noise (AWGN) channel, and then decode it using a
DVB-RCS2 duo-binary turbo decoder.

Specify the frame length, code rate, and permutation control parameters.
frameLen = 100%*8; % Payload length in bits

r. = II2/3II;
permParams = [37 0 2 0 2];

Generate a column vector of random binary data, and then encode the message by using a DVB-RCS2
turbo encoder.

msg = randi([0@ 1], frameLen,l);
code = dvbrcs2TurboEncode(msg, r,permParams) ;

Modulate the encoded message, and then pass it through an AWGN channel.

modCode = gammod(code, 16, ‘gray’,
'"InputType', 'bit"',

'UnitAveragePower',true); % 16QAM Modulation
snrdB = 10; % SNR
receivedCode = awgn(modCode,snrdB);
Demodulated the received signal.
noiseVar = 10.7(-snrdB/10); % Noise variance
demodLLR = gamdemod(receivedCode, 16, 'gray"',

2-27

2 Functions

'"OutputType', 'lL1lr",
"UnitAveragePower',true,
'NoiseVariance',noiseVar); % 16QAM Demodulation

Decode the demodulated soft bits by using a DVB-RCS2 turbo decoder.

decoded = dvbrcs2TurboDecode(-1*demodLLR, r,
permParams) ;

Display the erroneous bits.

fprintf('Number of bit errors = %f\n',sum(msg~=decoded))

Number of bit errors = 0.000000

Calculate BER for DVB-RCS2 Encode-Decode Chain

Calculate bit error rate (BER) for a Digital Video Broadcasting Second Generation Return Channel
over Satellite (DVB-RCS2) encode-decode chain.

Specify the frame length, code rate, and permutation control parameters.

frameLen = 25%*8; % Payload length in bits
r = II3/4II;
permParams = [19 13 2 9 15];

Define the simulation parameters.

snrdB = 6;
nVar = 10.~(-snrdB/10);
errorRate = comm.ErrorRate;

SNR
Noise variance
Calculates BER

o® o° o°

Run the encode-decode chain simulation for 10 frames and calculate the BER.

for frmIdx = 1:10
msg = randi([0® 1],framelLen,l);
code = dvbrcs2TurboEncode(msg, r,permParams) ;
modCode = gammod(code,4,[0 2 3 1],
"InputType', 'bit"',
'UnitAveragePower',true); % QPSK Modulation
receivedOut = awgn(modCode, snrdB);
demodOut = gamdemod(receivedOut,4,[0 2 3 1],
"OutputType', 'llr"',
"UnitAveragePower',true,
"NoiseVariance',nVar); % QPSK Demodulation
decoded = dvbrcs2TurboDecode(-1*demodOut, r,
permParams) ;
errorStats = errorRate(int8(msg),decoded);
end

Display the bit error rate.
fprintf('Error rate = %f\n',errorStats(1l));
Error rate = 0.003500

fprintf('Number of errors detected = %f\n',errorStats(2));

2-28

dvbrcs2TurboDecode

Number of errors detected = 7.000000
fprintf('Total bits compared = %f\n',errorStats(3));

Total bits compared = 2000.000000

Input Arguments

code — Encoded soft bits
column vector

Encoded soft bits, specified as a column vector.

Data Types: double

r — Code rate
II1/3II | II1/2II | II2/3II | II3/4II | II4/5II | II5/6II | II6/7II | II7/8II

Code rate, specified as one of these values.

Data Types: char | string

permparams — Permutation control parameters

"1/3"
"1/2"
"2/3"
"3/4"
"4/5"
"5/6"
"6/7"
"7/8"

vector

Permutation control parameters that the function uses to interleave the input soft bits data, specified
as a vector of these five elements in order: P, Q,, Q;, Q,, and Q. P must be in the range [9, 255], and

Q,, Q1, Q,, and Q5 must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to floor((inputmsglen x

r)/2). inputmsglen is the length of the input message, before encoding.

Data Types: double | uint8

numiter — Number of decoding iterations
8 (default) | positive integer

Number of decoding iterations, specified as a positive integer.

Data Types: double | uint8

2-29

2 Functions

Output Arguments

decoded — Decoded message
binary-valued column vector

Decoded message, returned as a binary-valued column vector.

Data Types: int8

Version History
Introduced in R2021b

References

[1]1 EN 301 545-2 - V1.2.1. Digital Video Broadcasting (DVB); Second Generation DVB Interactive
Satellite System (DVB-RCSZ2); Part 2: Lower Layers for Satellite standard (etsi.org).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
dvbrcs2TurboEncode | dvbrcs2BitRecover

Objects
dvbrcs2RecoveryConfig | comm.TurboDecoder

2-30

dvbs2BitRecover

dvbs2BitRecover

Recover bits for DVB-S2 PL frames

Syntax

[BITS,NUMFRAMESLOST] = dvbs2BitRecover (RXFRAME,NVAR)
[BITS,NUMFRAMESLOST, PKTCRCSTATUS] = dvbs2BitRecover (RXFRAME, NVAR)
[BITS,NUMFRAMESLOST] = dvbs2BitRecover (RXFRAME,NVAR, EARLYTERM)

Description

[BITS,NUMFRAMESLOST] = dvbs2BitRecover (RXFRAME,NVAR) recovers user packets (UPs) or a
continuous data stream, BITS, and the number of lost baseband frames, NUMFRAMESLOST. Input
RXFRAME is the received complex in-phase quadrature (IQ) symbols in the form of physical layer (PL)
frames of a Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission. Input
NVAR is the noise variance estimate, used to calculate soft bits.

[BITS,NUMFRAMESLOST, PKTCRCSTATUS] = dvbs2BitRecover (RXFRAME,NVAR) also returns the
UP cyclic redundancy check (CRC) status.

[BITS,NUMFRAMESLOST] = dvbs2BitRecover (RXFRAME,NVAR, EARLYTERM) uses low-density
parity-check (LDPC) decoding termination criterion, EARLYTERM, to recover data bits, BITS.

Examples

Recover Data Bits from Transport Stream DVB-S2 Transmission

Recover user packets (UPs) for multiple physical layer (PL) frames in a single transport stream
Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream. Create a DVB-S2 System object.

nFrames = 2;
s2WaveGen = dvbs2WaveformGenerator;

Create the bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1000 111]"';
pktLen = 1496;

Sync byte for TS packet is 47 Hex
UP length without sync bits is 1496

%
%

2-31

2 Functions

numPkts = s2WaveGen.MinNumPackets*nFrames;
txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = s2WaveGen.SamplesPerSymbol;

EsNodB = 1;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',s2WaveGen.RolloffFactor,
'"InputSamplesPerSymbol',sps, ...
'DecimationFactor',sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove the filter delay.

filtOut
rxFrame

rxFilter(rxIn);
filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover UPs. Display the number of frames lost and the UP cyclic redundancy check (CRC) status.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame, 10~ (-EsNodB/10));
disp(FramesLost)

0
disp(pktCRCStat)
{20x1 logical}

Recover Data Bits from Generic Stream DVB-S2 Transmission with Early Termination
Enabled

Recover user bits in a multi-input generic stream (GS) Digital Video Broadcasting Satellite Second
Generation (DVB-S2) transmission with variable modulation and coding scheme.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip', 'file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');

2-32

dvbs2BitRecover

end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

nFrames = 1;

Create a DVB-S2 System object with variable coding and modulation configuration for a multi-input
GS. Specify the modulation scheme and forward error correction (FEC) rate (MODCOD) and the data
field length (DFL).

s2WaveGen = dvbs2WaveformGenerator;

s2WaveGen.StreamFormat = "GS";

s2WaveGen.NumInputStreams = 3;

s2WaveGen.MODCOD = [10 15 6]; % QPSK 8/9, 8PSK 5/6, and QPSK 2/3
s2WaveGen.DFL = [44500 51387 42960];

Create a bit vector of input information bits for each input stream.

data = cell(s2WaveGen.NumInputStreams,1);
for i = 1l:s2WaveGen.NumInputStreams

data{i} = randi([0 1],s2WaveGen.DFL(i)*nFrames,1);
end

Generate the DVB-S2 time-domain waveform with the input information bits. Flush the transmit filter
to handle the filter delay and recover the complete frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform. Specify the samples per
symbol for the baseband filter.

sps = s2WaveGen.SamplesPerSymbol;

EsNodB = 10;

snrdB = EsNodB - 10*logl@(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(..
'RolloffFactor',s2WaveGen.RolloffFactor,
"InputSamplesPerSymbol',sps, ...
'DecimationFactor',sps);

s = coeffs(rxFilter);

rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove the filter delay.

filtOut
rxFrame

rxFilter(rxIn);
filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover user bits. Enable early termination of the low-density parity-codes (LDPC) decoder.
[bits,FramesLost] = dvbs2BitRecover(rxFrame,10”™(-EsNodB/10),1);

Display the number of frames lost and the number of bit errors in each stream.

fprintf('Number of frames lost = %d\n',FramesLost)

2-33

2 Functions

Number of frames lost = 0

for i = 1l:s2WaveGen.NumInputStreams
fprintf('Number of bit errors in stream %d = %d\n',1i,
sum(data{i}~=bits{i}))
end

Number of bit errors in stream 1
Number of bit errors in stream 2
Number of bit errors in stream 3

L ||
[ocNoNO]

Recover Data Bits from Transport Stream DVB-S2 Transmission with ISSYI Enabled

Recover user packets (UPs) in a multi-input transport stream (TS) Digital Video Broadcasting Satellite
Second Generation (DVB-S2) transmission with constant coding and modulation.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip','file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.
numFrames = 1;

Create a DVB-S2 System object with constant coding and modulation configuration for a multi-input
TS. Specify a short forward error correction (FEC) frame format and enable the input stream
synchronization (ISSY).

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 3;

s2WaveGen.FECFrame = "short";
s2WaveGen.MODCOD = 10; % QPSK 8/9
s2WaveGen.DFL = 13920;
s2WaveGen.ISSYI = true;

Create a bit vector of information bits of concatenated TS UPs.

syncBits = [0 1 000 111]"'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1l:s2WaveGen.NumInputStreams
numPkts = s2WaveGen.MinNumPackets (i)*numFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default
% 'short' implies the default length of ISSY as 2 bytes
txPkts = [repmat(syncBits,1l,numPkts); txRawPkts; ISSY]; % ISSY is appended at the end of UP
data{i} = txPkts(:);
end

2-34

dvbs2BitRecover

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform. Specify the samples per
symbol for the baseband filter.

sps = s2WaveGen.SamplesPerSymbol;

EsNodB = 12;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn (txWaveform,snrdB, 'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',s2WaveGen.RolloffFactor,
'"InputSamplesPerSymbol',sps, ...
'DecimationFactor', sps);

s = coeffs(rxFilter);

rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove filter delay.

filtOut
rxFrame

rxFilter(rxIn);
filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover UPs. Display the number of frames lost and the number of bit errors in each stream.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10”(-EsNodB/10));
fprintf('Number of frames lost = %d\n',FramesLost)

Number of frames lost = 0

for i = 1l:s2WaveGen.NumInputStreams
fprintf('Number of bit errors in stream %d = %d\n',1i,
numel (pktCRCStat{i})-sum(pktCRCStat{i}))

end

Number of bit errors in stream 1
Number of bit errors in stream 2
Number of bit errors in stream 3

I n
[ocNoNo)

Input Arguments

RXFRAME — Received 1Q symbols from PL frames of DVB-S2 transmission
column vector

Received IQ symbols from PL frames of a DVB-S2 single-input or multi-input transmission, specified
as a column vector. RXFRAME can contain one or multiple PL frames.

The length of RXFRAME depends on the value of the properties FECFrame, MODCOD, and HasPilots
of the dvbs2WaveformGenerator System object™.

Data Types: double
Complex Number Support: Yes

2-35

2 Functions

2-36

NVAR — Noise variance estimate
nonnegative scalar

Noise variance estimate that the function adds to the input IQ symbols, specified as a nonnegative
scalar. NVAR is used as a scaling factor to calculate the soft bits from the IQ symbols.

When you specify NVAR as 0, the function uses a value of 1e-5, which corresponds to a signal-to-noise
ratio (SNR) of 50 dB.

Data Types: double

EARLYTERM — Flag for early termination of LDPC decoder
0 or false (default) | 1 or true

Flag for early termination of the LDPC decoder when all parity-checks are satisfied, specified as a
numeric or logical value of 1 (true) or 0@ (false). When set to 1 (true), the LDPC decoder is
terminated when all parity checks are satisfied.

When you set this value to 0 (false), the maximum decoding iteration limit is 50.

Data Types: logical

Output Arguments

BITS — Recovered data bits
cell array of column vectors

Recovered data bits, returned as a cell array of column vectors. Each element of the cell array is of
data type int8. This output can be either UPs or generic data stream, depending of the
StreamFormat property of the dvbs2WaveformGenerator System object.

For a multi-input stream transmission, each element of the cell array corresponds to an individual
input stream.

Data Types: cell

NUMFRAMESLOST — Number of lost baseband frames
nonnegative integer

Number of lost baseband frames, returned as a nonnegative integer. If the baseband header CRC
fails, the frame is considered lost.

Data Types: double

PKTCRCSTATUS — UP CRC status
cell array of column vectors

UP CRC status, returned as a cell array of column vectors. Each element of the cell array is of data
type logical. For a multi-input stream transmission, each element of the cell array corresponds to
an individual input stream.

Dependencies

PKTCRCSTATUS applies for only the input streams where the value of the UPL property of
dvbs2WaveformGenerator System object is nonzero.

Data Types: cell

dvbs2BitRecover

Version History
Introduced in R2021a

References
[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dvbs2WaveformGenerator

2-37

2 Functions

dvbs2xBitRecover

Recover bits for DVB-S2X PL frames

Syntax

bits = dvbs2xBitRecover(rxdata,nvar)
[bits,numFramesLost, pktCRCStatus,decodedParams] = dvbs2xBitRecover(rxdata,

nvar)
[1 = dvbs2xBitRecover(rxdata,nvar,Name=Value)
Description

bits = dvbs2xBitRecover(rxdata,nvar) recovers user packets (UPs) or a continuous bit
stream, bits. Input rxdata is the received complex in-phase quadrature (IQ) symbols in the form of
physical layer (PL) frames of a Digital Video Broadcasting Satellite Second Generation extended
(DVB-S2X) single or multi-input stream transmission. Input nvar is the noise variance estimate,
which the function uses to calculate soft bits.

[bits,numFramesLost, pktCRCStatus,decodedParams] = dvbs2xBitRecover(rxdata,
nvar) also returns the number of frames lost numFramesLost UP cyclic redundancy check (CRC)
status pktCRCStatus and a structure decodedParams in which the fields indicate the parameters of
the processed PL frames.

[] = dvbs2xBitRecover(rxdata,nvar,Name=Value) specifies one or more optional name-
value arguments. For example, Mode="wideband" sets the mode of operation for the bit recovery to
the wideband frame processing mode.

Examples

Recover Data Bits from Transport Stream DVB-S2X Transmission in Regular Mode

Recover UPs for a given PL frame in a single transport stream (TS) DVB-S2X transmission in regular
mode.

This example uses MAT files with LDPC parity matrices. If the MAT files are not available on the path,
download and unzip the MAT files by entering this code at the MATLAB command line.

if ~exist("dvbs2xLDPCParityMatrices.mat","file")
if ~exist("s2xLDPCParityMatrices.zip","file")
url = "https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip";
websave("s2xLDPCParityMatrices.zip",url);
unzip("s2xLDPCParityMatrices.zip");
end
addpath("s2xLDPCParityMatrices");
end

Specify the number of PL frames per stream and set the baseband filtering at 4 samples per symbol.

2-38

dvbs2xBitRecover

nFrames = 1;
s2xWaveGen = dvbs2xWaveformGenerator;
sps = 4;

Create a bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1 000 111]";

pktLen = 1496;

numPkts = s2xWaveGen.MinNumPackets*nFrames;
txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

ync byte for TS packet is 47 Hex

% S
% UP length without sync bits is 1496

Generate the DVB-S2X time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2xWaveGen(data); flushFilter(s2xWaveGen)];
Add additive white Gaussian noise (AWGN) to the generated waveform.
EsNodB = 5;

snrdB = EsNodB - 10*logl@(sps);

rxWaveform = awgn(txWaveform,snrdB, "measured");

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
"RolloffFactor",s2xWaveGen.RolloffFactor,
"InputSamplesPerSymbol",sps, "DecimationFactor", sps);

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxWaveform);
rxSymb = filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover UPs.

[rxOut,numFramesLost] = dvbs2xBitRecover(rxSymb,10”(-EsNodB/10));
Display the number of frames lost and the UP cyclic redundancy check (CRC) status.
fprintf("numFramesLost = %d\n",numFramesLost)

numFramesLost = 0

fprintf("Number of bit errors = %d\n",sum(data~=rxOut{1}))

Number of bit errors = 0

Recover Data Bits from Generic Stream DVB-S2X Transmission in Wideband Mode

Recover user bits in a multi-input generic stream (GS) DVB-S2X transmission, with variable
modulation and coding scheme, in wideband mode.

This example uses MAT files with LDPC parity matrices. If the MAT files are not available on the path,
download and unzip the MAT files by entering this code at the MATLAB command prompt.

2-39

2 Functions

2-40

if ~exist("dvbs2xLDPCParityMatrices.mat","file")
if ~exist("s2xLDPCParityMatrices.zip","file")

url = "https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.

websave("s2xLDPCParityMatrices.zip",url);
unzip("s2xLDPCParityMatrices.zip");
end
addpath("s2xLDPCParityMatrices");
end

Specify the number of PL frames per stream and set the baseband filtering at 4 samples per symbol.

nFramesPerStream = 2;
sps = 4;

Create a DVB-S2X System object™ with variable coding and modulation configuration for a multi-
input GS and set its properties.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.NumInputStreams = 5;
s2xWaveGen.PLSDecimalCode = [140 132 133 141 1321];
s2xWaveGen.DFL = [37168 18448 18448 37168 18448];
s2xWaveGen.StreamFormat = "GS";
s2xWaveGen.HasTimeSlicing = true;

Create a bit vector of input information bits for each input stream.

data = cell(s2xWaveGen.NumInputStreams,1);
for i = 1l:s2xWaveGen.NumInputStreams

data{i} = randi([0 1],s2xWaveGen.DFL(i)*nFramesPerStream,1);
end

Generate the DVB-S2X time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2xWaveGen(data); flushFilter(s2xWaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

EsNodB = 4;
snrdB = EsNodB - 10*1o0gl0(sps);
rxWaveform = awgn(txWaveform,snrdB, "measured");

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
"RolloffFactor",s2xWaveGen.RolloffFactor,
"InputSamplesPerSymbol", sps,"DecimationFactor",sps);

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxWaveform);
rxSymb = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Set the time slicing number to the required PL frame value to be recovered. Recover the user bits.

tsn = 3;

[rxOut,numFramesLost,pktCRCStat] = dvbs2xBitRecover(rxSymb,10”(-EsNodB/10),
Mode="wideband",
TimeSlicingNumber=tsn);

zip";

dvbs2xBitRecover

Display the number of frames lost and the UP CRC status.
fprintf("numFramesLost = %d\n",numFramesLost)

numFramesLost = 0

fprintf("Number of bit errors = %d\n",sum(data{tsn}~=rx0ut{1}))

Number of bit errors = 0

Recover Data Bits from Transport Stream DVB-S2X Transmission in VL-SNR Mode
Recover UPs for a given PL frame in a single TS DVB-S2X transmission in VL-SNR mode.

This example uses MAT files with LDPC parity matrices. If the MAT files are not available on the path,
download and unzip the MAT files by entering this code at the MATLAB command prompt.

if ~exist("dvbs2xLDPCParityMatrices.mat","file")
if ~exist("s2xLDPCParityMatrices.zip","file")
url = "https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip";
websave("s2xLDPCParityMatrices.zip",url);
unzip("s2xLDPCParityMatrices.zip");
end
addpath("s2xLDPCParityMatrices");
end

Specify the number of PL frames per stream and set the baseband filtering at 4 samples per symbol.

nFrames = 1;
sps = 4;

Create a DVB-S2X System object™ for TS and set its properties.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.PLSDecimalCode = 129;
s2xWaveGen.NumInputStreams = 1;
s2xWaveGen.DFL = 14128;
s2xWaveGen.PLScramblingIndex =4;

Create a bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1 0 0 0611 1]"';

pktLen = 1496;

numPkts = s2xWaveGen.MinNumPackets*nFrames;
txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

ync byte for TS packet is 47 Hex

% S
% UP length without sync bits is 1496

Generate the DVB-S2X time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2xWaveGen(data); flushFilter(s2xWaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

2-41

2 Functions

EsNodB = -2;
snrdB = EsNodB - 10*10gl0(sps);
rxWaveform = awgn(txWaveform,snrdB, "measured");

Create a raised cosine receiver filter.
rxFilter = comm.RaisedCosineReceiveFilter(

"RolloffFactor",s2xWaveGen.RolloffFactor,
"InputSamplesPerSymbol",sps, "DecimationFactor",sps);

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxWaveform);
rxSymb = filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover UPs.

[rxOut,numFramesLost, pktCRCStat,decodedParams] = dvbs2xBitRecover(rxSymb,10”(-EsNodB/10),
Mode="v1l-snr",PLScramblingIndex=4);

Display the number of frames lost and parameters of the processed PL frame.
fprintf("numFramesLost = %d\n",numFramesLost)

numFramesLost = 0

disp(decodedParams)

PLSDecimalCode: 129
IsDummyFrame: 0
BBHeaderStatus: 1
ModulationOrder: 4
FECFrameLength: 64800
CanonicalMODCODName: {'QPSK 2/9'}
HasPilots: 1

Input Arguments

rxdata — Received IQ symbols from PL frames of DVB-S2X transmission
column vector

Received IQ symbols from the PL frames of a DVB-S2X single-input or multi-input transmission,
specified as a column vector. rxdata can contain one or more PL frames.

The length of rxdata depends on the forward error correction (FEC) frame length, modulation order,
mode (regular, VL-SNR, or wideband), and presence or absence of pilots specified for the PL frame.
Data Types: double

Complex Number Support: Yes

nvar — Noise variance estimate
nonnegative scalar

Noise variance estimate that the function adds to the input IQ symbols, specified as a nonnegative
scalar. The function uses nvar as a scaling factor to calculate the soft bits from the IQ symbols.

2-42

dvbs2xBitRecover

When you specify nvar as 0, the function uses a value of 1e-5, which corresponds to a signal-to-noise
ratio (SNR) of 50 dB.

Data Types: double
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Mode="wideband" sets the mode of operation for the bit recovery to wideband frame
processing mode.

PLScramblingIndex — PL scrambling sequence index
0 (default) | integer in range [0, 7] | vector of integers in range [0, 7]

PL scrambling sequence index, specified as a integer in the range [0, 7] or as a vector of integers in
the range [0, 7].

The function uses a gold sequence index of PLScramblingIndex*10949, as defined in ETSI EN 302
307-2 section 5.5.4 table 19e [1].

When you specify Mode as "wideband", the PLScramblingIndex value must be equal to the
scrambling sequence index value of the sequence used to scramble the required wideband PL frames.
Data Types: double

EarlyTermination — Flag for early termination of LDPC decoder
0 or false (default) | 1 or true

Flag for early termination of the LDPC decoder when all parity-checks are satisfied, specified as a
numeric or logical value of 1 (true) or 0 (false). When set to 1, the LDPC decoder is terminated
when all parity checks are satisfied.

When you set this value to 0, the maximum decoding iteration limit is 50.

If the modulation order of the PL frame is 2, the maximum decoding iteration limit is 75.
Data Types: logical

Mode — Mode of operation for bit recovery
"regular (default) | "vl-snr" | "wideband"

Mode of operation for the bit recovery, specified as one of these values.

* "regular — Use this option to set the mode to regular frame processing.

* "vl-snr" — Use this option to set the mode to very low signal-to-noise ratio (VL-SNR) frame
processing.

* "wideband" — Use this option to set the mode to wideband frame processing.

Note For this function, wideband mode does not support VL-SNR frame processing.

2-43

2 Functions

2-44

Data Types: char | string

TimeSlicingNumber — Time slicing number
1 (default) | scalar in range [0, 253]

Time slicing number encoded into the PL header of the required wideband frames, specified as a
scalar in the range [0, 253].

If the time slicing number decoded from a PL header is not equal to the required time slicing number
value, the function discards the PL frame and decodes the next wideband frame PL header.

To use this argument, you must specify Mode as "wideband".

Note In wideband mode, the number of streams is considered as number of services, where each
stream is considered to be an individual service. The receiver recovers only the service specified by
the TimeSlicingNumber argument.

Data Types: double

Output Arguments

bits — Recovered data bits
cell array of column vectors

Recovered data bits, returned as a cell array of column vectors. Each element of the cell array is of
data type int8. This output can be either UPs or a generic data stream, depending of the
StreamFormat property of the dvbs2xWaveformGenerator System object.

For a multi-input stream transmission, each element of the cell array corresponds to an individual
input stream.
Data Types: cell

numFramesLost — Number of lost baseband frames
nonnegative integer

Number of lost baseband frames, returned as a nonnegative integer. If the baseband header CRC
fails, the function considers the frame as lost.

Data Types: double

pktCRCStatus — UP CRC status
cell array of column vectors

UP CRC status, returned as a cell array of column vectors. Each element of the cell array is of data
type logical. For a multi-input stream transmission, each element of the cell array corresponds to
an individual input stream.

pktCRCStatus applies for only the input streams where the value of the UPL property of
dvbs2xWaveformGenerator System object is nonzero. When UPL is set to zero, pktCRCStatus
returns an empty output.

Data Types: cell

dvbs2xBitRecover

decodedParams — Parameters of the processed PL frames
structure

Parameters of the processed PL frames, returned as a structure with these fields.

Structure Field Value Description
PLSDecimalCode 0 or integer in the range [4, PL signaling code information
249] derived from the PL header
recovery.
IsDummyFrame 0 (false)or 1 (true) Flag to indicate whether the

decoded PL frame is a dummy
frame. A value of 1 (true)
indicates the decoded PL frame
is a dummy frame.

BBHeaderCRCStatus 0 (false)or 1 (true) Flag to indicate whether the
baseband (BB) header CRC
check passed. A value of 1
(true) indicates the header
CRC is valid.

This field is returned as 0
(false) for dummy frames.

ModulationOrder Integer from the set {0, 2, 4, 8, |Modulation order of the FEC
16, 32, 64, 128, 256} frame symbols.

This field is returned as 0 for
dummy frames.

FECFrameLength 16200, 32400, or 64800 FEC frame length is the output
length (in bits) specified to the
FEC encoder.

This field is returned as 0 for
dummy frames.

2-45

2 Functions

2-46

Structure Field Value Description

CanonicalMODCODName cell array Canonical modulation scheme
and code rate name for VL-SNR
frame transmissions. This field
is present only if you pass a VL-
SNR frame to this ideal receiver.

Valid CanonicalMODCODName
values include these options.

+ "QPSK 2/9", "BPSK 1/5",
“"BPSK 11/45", "BPSK-S
1/5", "BPSK-S 11/45",
and "BPSK 1/3" —
Applicable for VL-SNR set 1

« "BPSK 1/5", "BPSK
4/15", "BPSK 1/3", and
"dummy" — Applicable for
VL-SNR set 2

If the frame passed to the
receiver is not a VL-SNR frame,
the output of this field is an
empty string.

HasPilots 0 (false)or 1 (true) Flag to indicate the pilot block.
A value of 1 (true) indicates the
presence of pilots.

This field is returned as 0

(false) for dummy frames.

In the case of a single-input stream, all structure fields except CanonicalMODCODName are returned
as integers and as vectors in the case of a multi-input stream. For a multi-input stream, each element
of a vector corresponds to an individual input stream.

Whether for a single-input stream or a multi-input stream, the function returns
CanonicalMODCODName as a cell array, where each element of the cell array is of data type char or
string.

Data Types: struct

Version History
Introduced in R2022b

References

[1] ETSI Standard EN 302 307-2 V1.1.1(2015-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and Other Broadband Satellite Applications; Part 2:
DVB-S2 Extensions (DVB-52X)

dvbs2xBitRecover

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Objects
dvbs2xWaveformGenerator | dvbs2WaveformGenerator

Functions
dvbs2BitRecover

Topics

“End-to-End DVB-S2X Simulation with RF Impairments and Corrections for Regular Frames”
“End-to-End DVB-S2X Simulation with RF Impairments and Corrections for VL-SNR Frames”
“End-to-End DVB-S2X Simulation with RF Impairments and Corrections in Wideband Mode”

2-47

2 Functions

gnssBitSynchronize

Bit synchronizer for GNSS receivers

Syntax

[syncidx,numtr] = gnssBitSynchronize(samples,n)

Description

[syncidx,numtr] = gnssBitSynchronize(samples,n) performs bit synchronization on the
input samples samples with a window size of n, as defined in [2]. The function searches the input
samples for the maximum number of transitions from a positive to a negative value and from a
negative to a positive value, and returns the bit synchronization index syncidx and the number of
transitions corresponding to each sample location numtr.

Use this function for global navigation satellite systems (GNSS) receivers that use code division
multiple access (CDMA) schemes. These GNSS receivers include GPS, NavIC, and QZSS.

Examples

Bit Synchronize Signal Generated Using C/A-Code

Perform bit synchronization for a noisy signal generated from random bits using C/A-code. Assume
perfect time and frequency synchronization.

Generate the transmit signal from random bits using C/A-code.

n = 20;

numbits = 500;

numcachips = 1023;

txbits randi([0,1],numbits,1);
cacode 1 - 2*double(repmat(gnssCACode(1,"GPS"),n*numbits,1));
txsig = cacode.*repelem(l - 2*txbits,numcachips*n,1);

Number of C/A-code blocks per bit
Number of data bits
Number of C/A-code chips

o® o o°

Add additive white Gaussian noise (AWGN) to the generated signal.

snrdB
rxsig

= -25; % Signal to noise ratio in dB
= awgn(txsig,snrdB, "measured");

Multiply the noisy signal with time synchronized reference C/A-code and integrate the samples.

corrsamples = rxsig.*cacode;
integsamples = sum(reshape(corrsamples,numcachips,[]));

Delay the samples by a fixed offset.

dly = 15; % Number of samples delayed
bitsyncin = [zeros(dly,1l);integsamples(:)];

Perform bit synchronization on the input samples.

2-48

gnssBitSynchronize

Number of Transitions

[syncidx,numtr] = gnssBitSynchronize(bitsyncin,n);

Display the value of bit synchronization index, syncidx. Note that it is equal to the number to

samples delayed + 1.

syncidx

syncidx = 16

Plot the transition chart at each sample location.

bar(numtr)

xlabel("Sample Location")
ylabel("Number of Transitions")
title("Transition Chart")

Transition Chart
3[]':] T T T T T T T

250

[
=
=]

150

100

a0

0 2 4 6 8 10 12 14
Sample Location

Input Arguments

samples — Input samples
real-valued column vector

2-49

2 Functions

2-50

Input samples, specified as a real-valued column vector of length greater than or equal to n.

For a better estimate of the bit synchronization index, specify a large number of input samples (such
as hundreds of times n).
Data Types: double

n — Window size used for searching
positive integer

Window size used for searching the input samples, specified as a positive integer. This value
represents the number of spreading code blocks per bit, or the number of samples per bit.

Data Types: double | uint8

Output Arguments

syncidx — Bit synchronization index
integer in the range [1, n]

Bit synchronization index, returned as an integer in the range [1, n]. This index value represents the
maximum number of transitions within the window size n.

The data type of the index is same as that of n.

numtr — Number of transitions corresponding to each sample location
column vector

Number of transitions corresponding to each sample location, returned as a column vector of length
n.

Data Types: double

Version History
Introduced in R2022b

References

[1] GPS Enterprise Space & Missile Systems Center (SMC) - LAAFB. NAVSTAR GPS Space Segment/
Navigation User Segment Interfaces. IS-GPS-200L. El Segundo, CA: SAIC (GPS SE&I), May
14, 2020. https://navcen.uscg.gov/sites/default/files/pdf/gps/IS GPS 200L.pdf.

[2] Kaplan, Elliott D., and C. Hegarty, eds. Understanding GPS/GNSS: Principles and Applications.

Third edition. GNSS Technology and Applications Series. Boston; London: Artech House,
2017.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

https://navcen.uscg.gov/sites/default/files/pdf/gps/IS_GPS_200L.pdf

gnssBitSynchronize

See Also

Functions
gnssCACode

Objects
gpsPCode

Topics
“GPS Data Decode”

2-51

2 Functions

2-52

gnssCACode

Generate C/A-code for GPS, NavIC, and QZSS satellites

Syntax

code = gnssCACode(prnid,gnsstype)

Description
code = gnssCACode(prnid,gnsstype) generates coarse acquisition codes (C/A-codes) for the

specified pseudo-random noise (PRN) index, prnid, of the satellite constellation specified by
gnsstype.

Examples

Generate C/A-code for Multiple GPS Satellites

Specify the unique pseudo-random noise (PRN) index for for three GPS satellites.

prnid = [43 87 10];
gnsstype = "GPS";

3 satellites
Global navigation satellite constellation type

%
%

Generate the C/A-code for these three GPS satellites.

code = gnssCACode(prnid,gnsstype);

size(code)
ans = 1Ix2
1023 3

Generate C/A-code for NavIC Satellites over Multiple Epochs

Specify the unique PRN index for two NavIC S-band satellites.

prnid = [2 13];
gnsstype = "NavIC S-SPS"; % S-band

Generate the C/A-code for these two NavIC S-band satellites.
code = gnssCACode(prnid,gnsstype);

Calculate the output for 10 C/A-code epochs.

numCAEpochs = 10;

fullCode = repmat(code,numCAEpochs,1);
size(fullCode)

gnssCACode

ans = 1x2

10230 2

Input Arguments

prnid — Satellite PRN index
integer | vector of integers

Satellite PRN index for which the function generates a C/A-code, specified as a scalar indicating a
PRN index for a single satellite or a vector indicating PRN indices for multiple satellites. Valid values
of PRN indices depend on the gnsstype input.

gnsstype Value PRN Index Valid Value
"GPS" integer in the range [1, 210]
"Qzss™ integer in the range [183, 202]
“NavIC L5-SPS" or "NavIC S-SPS" integer in the range [1, 14]

Data Types: double | uint8

gnsstype — Type of global navigation satellite constellation
"GPS" | "QZSS" | "NavIC L5-SPS" | "NavIC S-SPS"

Type of global navigation satellite constellation, specified as one of these values.

+ "GPS"
. "Qzss"

+ "NavIC L5-SPS"
+ "NavIC S-SPS"

Data Types: char | string

Output Arguments

code — Generated C/A-code
column vector | matrix

Generated C/A-code, returned as one of these options.

* Column vector of length 1023 — When you specify prnid as a scalar.

* Matrix — When you specify prnid as a vector. The number of rows of this matrix is equal to 1023,
and the number of columns correspond to the length of the prnid vector. Each column of this
matrix represents the generated C/A-code corresponding to the element in the prnid vector.

For detailed information on the relationship between PRN index values and the generated C/A-codes,

refer to IS-GPS-200L Table 3-Ia, 3-Ib, and 6-I [1], ISRO-IRNSS-ICD-SPS-1.1 Table 7 [2], and IS-QZSS-
PNT-004 Table 3.2.2-2 [3].

2-53

2 Functions

Version History
Introduced in R2021b
References

[1] IS-GPS-200L. "NAVSTAR GPS Space Segment/Navigation User Segment Interfaces". GPS
Enterprise Space & Missile Systems Center (SMC) - LAAFB, May 14, 2020.

[2] ISRO-IRNSS-ICD-SPS-1.1. "Signal in space ICD for standard positioning service". ISRO satellite
navigation programme. August 2017.

[3] IS-QZSS-PNT-004. "Quasi-Zenith Satellite System. Interface Specification. Satellite Positioning,
Navigation and Timing Service". Cabinet office, Government of Japan. January 25, 2021.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Objects
gpsPCode | comm.GoldSequence | comm.PNSequence

Topics
“GPS Waveform Generation”

2-54

p618PropagationLosses

p618PropagationLosses

Calculate Earth-space propagation losses, cross-polarization discrimination, and sky noise
temperature

Syntax

[pl,xpd, tsky]
[pl,xpd, tsky]

p618PropagationLosses(p618cfg)
p618PropagationLosses(p618cfg,Name,Value)

Description

[pl,xpd,tsky] = p6l8PropagationLosses(p618cfg) returns Earth-space propagation losses
pl, cross-polarization discrimination xpd, and sky noise temperature tsky, as defined in the ITU-R
P.618 recommendation [1]. p618cfg specifies the P.618 configuration parameters.

This function requires MAT-files with digital maps from International Telecommunication Union (ITU)
documents. If they are not available on the path, download and uncompress the data files from
https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz to a location on the
MATLAB path.

[pl,xpd,tsky] = p618PropagationLosses(p618cfg,Name,Value) specifies additional
options using one or more name-value pair arguments.

Examples

Calculate Propagation Losses, Cross-Polarization Discrimination, and Sky Noise
Temperature

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat', " 'file');
p837 = exist('p837.mat', 'file');
p840 = exist('p840.mat','file');
matFiles = [maps p836 p837 p840];

if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz','file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz"';
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz');
else
untar('ITURDigitalMaps.tar.gz');
end
addpath(cd);
end

Create a default P.618 configuration object.

cfg = p618Config;

2-55

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

2 Functions

2-56

Specify the time percentage of excess for the rain attenuation per annum as 0.01 and the time
percentage of excess for the total attenuation per annum as 0.001.

cfg.RainAnnualExceedance = 0.01;
cfg.TotalAnnualExceedance = 0.001;

Calculate the propagation losses, cross-polarization discrimination, and sky noise temperature.
[pl,xpd,tsky] = p61l8PropagationLosses(cfg)

pl = struct with fields:

Ag: 0.2269
Ac: 0.4552
Ar: 6.7981
As: 0.2633
At: 15.6091

xpd = 32.8876

tsky = 267.4689

Calculate Earth-space Propagation Losses Using Name-Value Pair Arguments

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat', 'file');
p837 = exist('p837.mat', 'file');
p840 = exist('p840.mat', 'file');
matFiles = [maps p836 p837 p840];

if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz','file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz"';
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz"');
else
untar('ITURDigitalMaps.tar.gz"');
end
addpath(cd);
end

Create a P618 configuration object with a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Specify the surface water vapor density as 2.8%, the total columnar content of the cloud liquid water
m
as 1.4 k—%, and the median value of the wet surface refractivity as 1.2. Set the earth station height as
m
0.5 km. Calculate the Earth-space propagation losses.

pl = p618PropagationLosses(cfg, 'StationHeight',0.5,...
'WaterVaporDensity',2.8, ...

p618PropagationLosses

'TotalColumnarContent',1.4,...
'WetSurfaceRefractivity',1.2)

pl = struct with fields:
Ag: 0.8649
Ac: 1.0987
Ar: 0.8907
As: 0.1372
At: 2.8590

Calculate Propagation Losses in Light Rainfall

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat', 'file');
p837 = exist('p837.mat', 'file');
p840 = exist('p840.mat', 'file');

0 .

matFiles = [maps p836 p837 p840];
if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz', 'file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz";
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz');
else
untar('ITURDigitalMaps.tar.gz"');
end
addpath(cd);
end

Create a P618 configuration object that occupies a signal frequency of 20 GHz.
cfg = p618Config('Frequency',20e9);
Calculate the propagation losses in a light rainfall of 1 mm/hr with an earth station height of 0.75 km.
pl = p6l18PropagationLosses(cfg, 'RainRate',1l, 'StationHeight',0.75)
pl = struct with fields:
Ag: 0.7996
Ac: 0.8793
Ar: 0.0177

As: 0.3187
At: 1.7514

Input Arguments

p618cfg — P.618 configuration
p618Config object

2-57

2 Functions

2-58

P.618 configuration required for the calculation of the propagation losses, cross-polarization
discrimination, and sky noise temperature, specified as a p618Config object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'StationHeight',1.5 specifies the earth station height as 1.5 km.

StationHeight — Height of earth station
nonnegative scalar

Height of the earth station above the mean sea level in km, specified as the comma-separated pair
consisting of 'StationHeight' and a nonnegative scalar. The maximum supported value is 100. If the
local data is not available as an input, the function uses the digital maps provided in ITU-R P1511
section 1, Annex 1 [3] to obtain the station height value.

Data Types: double | single

Temperature — Temperature of earth surface
nonnegative scalar

Temperature of the earth surface in kelvin, specified as the comma-separated pair consisting of
'Temperature' and a nonnegative scalar. If the local data is not available as an input, the function
uses the map of the mean annual surface temperature provided in ITU-R P.1510 section 1, Annex 1 [4]
to obtain the temperature value.

Data Types: double | single

Pressure — Dry air pressure at earth surface
nonnegative scalar

Dry air pressure at the earth surface in hPa, specified as the comma-separated pair consisting of
'Pressure' and a nonnegative scalar. If the local data is not available as an input, the function uses
the mean annual global reference atmosphere provided in ITU-R P.835 section 1.1, Annex 1 [5] to
obtain the air pressure value.

Data Types: double | single

WaterVaporDensity — Surface water vapor density
nonnegative scalar

Surface water vapor density in g/m3, specified as the comma-separated pair consisting of
'WaterVaporDensity' and a nonnegative scalar. If the local data is not available as an input, the
function uses the digital maps provided in ITU-R P836 section 1, Annex 1 [6] to estimate the value of
the water vapor density.

Data Types: double | single

IntegratedWaterVaporContent — Integrated water vapor content
positive scalar

Integrated water vapor content exceeded for the percentage of GasAnnualExceedance in an average
year, specified as the comma-separated pair consisting of 'IntegratedWaterVaporContent'and a

p618PropagationLosses

positive scalar. Units are in kg/m? or mm. If the local data is not available as an input, the function
uses the digital maps provided in ITU-R P.836 section 1, Annex 2 [6] to obtain the value of the
integrated water vapor content.

Data Types: double | single

TotalColumnarContent — Total columnar content of cloud liquid water
nonnegative scalar

Total columnar content of the cloud liquid water exceeded for the percentage of
CloudAnnualExceedance in an average year, specified as the comma-separated pair consisting of
'TotalColumnarContent' and a nonnegative scalar. Units are in kg/m? or mm. If the local data is
not available as an input, the function uses the digital maps provided in ITU-R P.840 section 3.1,
Annex 1 [7] to obtain the value of the total columnar content.

Data Types: double | single

RainRate — Point rainfall rate
nonnegative scalar

Point rainfall rate at the location for 0.01% of an average year, specified as the comma-separated pair
consisting of 'RainRate' and a nonnegative scalar. Units are in mm/hr. If the local data is not
available as an input, the function uses the digital maps provided in ITU-R P.837, Annex 1 [8] to
obtain the value of the point rainfall rate.

Data Types: double | single

WetSurfaceRefractivity — Median value of wet term of surface refractivity
nonnegative scalar

Median value of the wet term of the surface refractivity, specified as the comma-separated pair
consisting of 'WetSurfaceRefractivity' and a nonnegative scalar. If the local data is not available
as an input, the function uses the digital maps provided in ITU-R P453 section 2.2, Annex 1 [9] to
obtain the value of the wet surface refractivity.

Data Types: double | single

MeanRadiatingTemperature — Atmospheric mean radiating temperature
nonnegative scalar

Atmospheric mean radiating temperature in kelvin, specified as the comma-separated pair consisting

of 'MeanRadiatingTemperature' and a nonnegative scalar. If the local data is not available as an
input, the function uses an atmospheric mean radiating temperature of 275 K in the computation.

Data Types: double | single

Output Arguments

pl — Earth-space propagation losses information
structure

Earth-space propagation losses information, returned as a structure containing these fields.

Fields Description

At Total atmospheric attenuation (in dB)

2-59

2 Functions

2-60

Fields Description

Ag Gaseous attenuation (in dB)

Ac Cloud and fog attenuation (in dB)

Ar Rain attenuation (in dB)

As gttenuation due to tropospheric scintillation (in
B)

xpd — Cross-polarization discrimination
scalar

Cross-polarization discrimination in (dB) not exceeded for the percentage of the
RainAnnualExceedance, returned as a scalar.

tsky — Sky noise temperature
nonnegative scalar

Sky noise temperature (in kelvin) at the ground station antenna, returned as a nonnegative scalar.

Version History

Introduced in R2021a

References

[1] International Telecommunication Union, ITU-R Recommendation P618 (12/2017).
[2] International Telecommunication Union, ITU-R Recommendation P.676 (08/2019).
[3] International Telecommunication Union, ITU-R Recommendation P1511 (08/2019).
[4] International Telecommunication Union, ITU-R Recommendation P.1510 (06/2017).
[5] International Telecommunication Union, ITU-R Recommendation P.835 (12/2017).
[6] International Telecommunication Union, ITU-R Recommendation P.836 (12/2017).
[7] International Telecommunication Union, ITU-R Recommendation P.840 (08/2019).
[8] International Telecommunication Union, ITU-R Recommendation P837 (06/2017).
[9] International Telecommunication Union, ITU-R Recommendation P453 (08/2019).
[10] International Telecommunication Union, ITU-R Recommendation P.839 (09/2013).

[11] International Telecommunication Union, ITU-R Recommendation P838 (03/2005).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

p618PropagationLosses

Supports only MEX code generation.

See Also

Objects
p618Config | p618SiteDiversityConfig

Functions
p618SiteDiversityOutage

2-61

2 Functions

p618SiteDiversityOutage

Calculate outage probability due to rain attenuation with site diversity

Syntax

Outage
Outage

p618SiteDiversityOutage(cfgsd)
p618SiteDiversityQutage(cfgsd,Name,Value)

Description

Outage = p618SiteDiversityOutage(cfgsd) returns the outage probability due to rain
attenuation with site diversity. The function calculates this value as per the ITU-R P.618
recommendation [1].

This function requires MAT-files with digital maps from International Telecommunication Union (ITU)
documents. If they are not available on the path, download and uncompress the data files from
https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz to a location on the
MATLAB path.

Outage = p618SiteDiversityQutage(cfgsd,Name,Value) specifies additional options using
one or more name-value pair arguments.

Examples

Calculate Outage Probability due to Rain Attenuation with Site Diversity

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat', 'file');
p837 = exist('p837.mat', 'file');
p840 = exist('p840.mat', 'file');
01;

matFiles = [maps p836 p837 p84
if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz', 'file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz";
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz"');
else
untar('ITURDigitalMaps.tar.gz"');
end
addpath(cd);

’

end

Create a P.618 site diversity configuration object with a signal frequency of 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

2-62

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

p618SiteDiversityOutage

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

cfgsd.PolarizationTiltAngle = [-90 90];

cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability due to rain attenuation with site diversity.
outage = p618SiteDiversityOutage(cfgsd)

outage = 0.0338

Calculate Outage Probability with Site Diversity Using Name-Value Pair Arguments

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute these commands to download and untar the MAT-iles.

maps = exist('maps.mat','file');
p836 = exist('p836.mat', 'file');
p837 = exist('p837.mat', 'file');
p840 = exist('p840.mat', 'file');

0]

’

matFiles = [maps p836 p837 p84
if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz', 'file')

url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz";

websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz');
else
untar('ITURDigitalMaps.tar.gz');
end
addpath(cd);
end

Create a default P.618 site diversity configuration object. Change the signal frequency to 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the separation between two sites as 50 km and the attenuation threshold on the two links as
[9 9] dB.

cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability for the specified site diversity configuration.

outage = p618SiteDiversityOutage(cfgsd, 'RainAnnualExceedances',[0.01 0.05 0.2],...
'RainProbabilityl',0.3,...
'RainProbability2',0.5)

outage = 0.0339

2-63

’

2 Functions

2-64

Input Arguments

cfgsd — P.618 site diversity configuration
p618SiteDiversityConfig object

P.618 site diversity configuration required for the calculation of the outage probability due to rain
attenuation, specified as a p618SiteDiversityConfig object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'RainAnnualExceedances',[0.01 0.02 0.03 0.05] specifies the average annual
time percentage of excess for the rain attenuation.

RainAnnualExceedances — Average annual time percentage of excess for rain attenuation
nonnegative vector

Average annual time percentage of excess for the rain attenuation, specified as the comma-separated
pair consisting of 'RainAnnualExceedances' and a nonnegative vector. The values in this vector
must be less than the probability of rain at the two sites.

If the local data is not available as an input, the function uses [0.01 0.02 0.03 0.05 0.1 0.2
0.3 0.5 1 2 3 5] as the default vector.

Data Types: double | single

RainAttenuationsl — Rain attenuations at site 1
nonnegative vector

Rain attenuations (in dB) at site 1, specified as the comma-separated pair consisting of
'RainAttenuationsl’' and a nonnegative vector. This value specifies the rain attenuation exceeded
for the percentages given in the RainAnnualExceedances name-value pair argument. The
dimension of this value must match that of the RainAnnualExceedances.

If the local data is not available as an input, the function uses the method as defined in section 2.2.1.1
of the ITU-R P.618 [1] recommendation to calculate the rain attenuations for site 1.

Note If you do not specify RainAttenuationsl, then RainAnnualExceedances must be in the
range from 0.01% to 5%.

Data Types: double | single

RainAttenuations2 — Rain attenuations at site 2
nonnegative vector

Rain attenuations (in dB) at site 2, specified as the comma-separated pair consisting of
'RainAttenuations2' and a nonnegative vector. This value specifies the rain attenuation exceeded
for the percentages given in the RainAnnualExceedances name-value pair argument. The
dimension of this value must match that of the RainAnnualExceedances.

p618SiteDiversityOutage

If the local data is not available as an input, the function uses the method as defined in section 2.2.1.1
of the ITU-R P.618 recommendation to calculate the rain attenuations for site 2.

Note If you do not specify RainAttenuations2, then RainAnnualExceedances must be in the
range from 0.01% to 5%.

Data Types: double | single

RainProbabilityl — Probability of rain for site 1
nonnegative scalar

Probability of (in %) rain for site 1, specified as the comma-separated pair consisting of
'RainProbabilityl’' and a nonnegative scalar.

If the local measured rainfall rate data is not available as an input, the function uses the digital maps
as defined in ITU-R P.837 Annex 1 [2] to calculate the rain probability for the sites.

Data Types: double | single

RainProbability2 — Probability of rain for site 2
nonnegative scalar

Probability of (in %) rain for site 2, specified as the comma-separated pair consisting of
'RainProbability2' and a nonnegative scalar.

If the local measured rainfall rate data is not available as an input, the function uses the digital maps
as defined in ITU-R P837 Annex 1 [2] to calculate the rain probability for the sites.

Data Types: double | single

Output Arguments

Outage — Outage probability due to rain attenuation with site diversity
nonnegative scalar

Outage probability due to rain attenuation with site diversity, returned as a nonnegative scalar. This
argument predicts the joint probability (P.(A;= a;, A, = a,)), where the attenuation on the path of the
site 1 must exceed a; and the attenuation on the path of the site 2 must exceed a,.

Version History

Introduced in R2021a

References

[1] International Telecommunication Union, ITU-R Recommendation P618 (12/2017).
[2] International Telecommunication Union, ITU-R Recommendation P.837 (06/2017).
[3] International Telecommunication Union, ITU-R Recommendation P.1511 (08/2019).

[4] International Telecommunication Union, ITU-R Recommendation P1510 (06/2017).

2-65

2 Functions

2-66

[5] International Telecommunication Union, ITU-R Recommendation P.836 (12/2017).
[6] International Telecommunication Union, ITU-R Recommendation P840 (08/2019).
[7] International Telecommunication Union, ITU-R Recommendation P453 (08/2019).
[8] International Telecommunication Union, ITU-R Recommendation P.839 (09/2013).

[9] International Telecommunication Union, ITU-R Recommendation P.838 (03/2005).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Supports only MEX code generation.

See Also

Objects
p618Config | p618SiteDiversityConfig

Functions
p618PropagationLosses

ccsdsTCWaveform

ccsdsTCWaveform

Generate CCSDS TC waveform

Syntax

waveform = ccsdsTCWaveform(bits,cfgFormat)
[waveform,encodedBits] = ccsdsTCWaveform(bits,cfgFormat)

Description

waveform = ccsdsTCWaveform(bits,cfgFormat) generates a Consultative Committee for
Space Data Systems (CCSDS) Telecommand (TC) time-domain waveform, waveform, for the
corresponding input bits, bits, and the given format configuration, cfgFormat.

[waveform,encodedBits] = ccsdsTCWaveform(bits,cfgFormat) also returns the bits
obtained after TC synchronization and channel coding sublayer operations.

Examples

Create CCSDS TC Waveform for Multiple CLTUs

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for multiple communications link transmission units (CLTUs).

Create a default CCSDS TC configuration object.

cfg = ccsdsTCConfig;
disp(cfqg)

ccsdsTCConfig with properties:

DataFormat: "CLTU"
ChannelCoding: "BCH"
HasRandomizer: 1

Modulation: "PCM/PSK/PM"

PCMFormat: "NRZ-L"
ModulationIndex: 0.4000
SubcarrierFrequency: 16000
SymbolRate: 4000
SamplesPerSymbol: 10

Read-only properties:
SubcarrierWaveform: "sine"

Specify the number of CLTUs and the transfer frame length.

numCLTUs = 10;
transferFramesLength = 8; % Number of octets in each transfer frame

Generate the CCSDS TC time-domain waveform for the transfer frames.

2-67

2 Functions

Frocessing

2-68

¢ = cell(1,numCLTUs); % Cell array to store the generated waveform for all CLTUs
for k=1:numCLTUs
bits = randi([0 1],8*transferFramesLength,1); % Bits in the TC transfer frame
waveform = ccsdsTCWaveform(bits,cfg);
c{1,k} = waveform; % Waveform for each CLTU
end

Create a spectrum analyzer System object to display the frequency spectrum of the generated CCSDS
TC time-domain waveform from the last CLTU.

scope = spectrumAnalyzer;
scope.SampleRate = cfg.SamplesPerSymbol*cfg.SymbolRate;
scope(waveform) % Last CLTU spectrum display

ESTIMATIOM MEASUREMENTS SPECTRUM SPECTRAL MASK CHANNEL MEASUREMENTS

Sample Rate = 40.0000 kHz Frames =0 T = 0.00000

Create CCSDS TC Waveform for Acquisition Sequence

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for a acquisition sequence with 20 octets.

Create a CCSDS TC configuration object, and then specify the object properties. Display the object
properties.

cfg = ccsdsTCConfig;
cfg.DataFormat = "acquisition sequence";

ccsdsTCWaveform

cfg.Modulation = "PCM/PM/biphase-L";
cfg.ModulationIndex = 1.2;
disp(cfg)

ccsdsTCConfig with properties:

DataFormat: "acquisition sequence"

Modulation: "PCM/PM/biphase-L"
ModulationIndex: 1.2000
SamplesPerSymbol: 10

Generate the CCSDS TC waveform.

bits = repmat([0;1],8*10,1); % Alternating 1ls and 0s with 0s as a starting sequence bit
waveform = ccsdsTCWaveform(bits,cfqg);

Input Arguments

bits — Information bits
binary-valued column vector

Information bits, specified as a binary-valued column vector.

* When you set the DataFormat property of the ccsdsTCConfig object to "CLTU", the length of
this vector must be an integer multiple of 8.

* When you set the DataFormat property of the ccsdsTCConfig ohject to "acquisition
sequence" or "idle sequence", this vector must be a sequence of alternating 1s and 0s,
starting with either 1 or 0.

Data Types: double | int8 | logical

cfgFormat — Format configuration object
ccsdsTCConfig object

Format configuration object, specified as ccsdsTCConfig object. The properties of this object define
the parameters required for CCSDS TC waveform generation.

Output Arguments

waveform — Generated time-domain CCSDS TC waveform
column vector

Generated time-domain CCSDS TC waveform, returned as a column vector. The waveform output is
generated in the form of complex in-phase quadrature (IQ) samples.

Data Types: double

encodedBits — Output bits obtained after TC synchronization and channel coding sublayer
operations
column vector

Output bits obtained after TC synchronization and channel coding sublayer operations, returned as a
column vector.

Data Types: double

2-69

2 Functions

Version History

Introduced in R2021a

References

[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."
Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsTCIdealReceiver

Objects
ccsdsTCConfig | ccsdsTMWaveformGenerator

2-70

dvbrcs2BitRecover

dvbrcs2BitRecover

Recover bits for DVB-RCS2 waveform

Syntax

[bits,framePDUErr] = dvbrcs2BitRecover(rxdata,cfgrx,nvar)

Description

[bits,framePDUErr] = dvbrcs2BitRecover(rxdata,cfgrx,nvar) recovers frame protocol
data unit (PDU), bits, and the frame PDU cyclic redundancy check (CRC) status, framePDUErTr.
Input rxdata is the received complex in-phase quadrature (IQ) symbols in the form of bursts of a
Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2)
transmission. cfgrx is the recovery configuration object, dvbrcs2RecoveryConfig. nvar is the
noise variance estimate that the function uses to calculate soft bits.

The function supports demodulation and decoding of the turbo codes with linear modulation (TC-LM),
and spread spectrum and turbo codes with linear modulation (SS-TC-LM) transmission formats, with
all three PDU types (logon, control, and traffic), for reference and custom waveforms.

Examples

Recover PDU from DVB-RCS2 Reference Waveform
Recover the frame PDU for a DVB-RCS2 reference waveform.

Set the properties of a DVB-RCS2 waveform generator System object™.
wg = dvbrcs2WaveformGenerator;

wg.TransmissionFormat = "SS-TC-LM";

wg.WaveformID = 7;

wg.SamplesPerSymbol = 2;

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU) ;

Add additive white Gaussian noise (AWGN) to the generated waveform.
sps = wg.SamplesPerSymbol;

EsNodB = 1;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, "measured");

Create and then configure the DVB-RCS2 recovery configuration object.

2-71

2 Functions

cfg = dvbrcs2RecoveryConfig;
cfg.TransmissionFormat = wg.TransmissionFormat;
cfg.WaveformID = wg.WaveformID;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',0.2,
"InputSamplesPerSymbol', sps,
'DecimationFactor',sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay.

filtOut = rxFilter([rxIn;
complex(zeros(span/2*sps,1))1);
rxSymb = filtOut(span+l:end);

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOut,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10”(-EsNodB/10));
fprintf("Erroneous frame PDU = %d\n", pduErr)

Erroneous frame PDU = 0
fprintf("Number of bit errors = %d\n", sum(framePDU~=rx0ut))

Number of bit errors = 0

Recover PDU from DVB-RCS2 Custom Waveform
Recover the frame PDU for a DVB-RCS2 custom waveform.

Set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.IsCustomWaveform = true;
wg.PayloadLengthInBytes = 115;
wg.MappingScheme = "8PSK";

wg.CodeRate = "2/3";
wg.PermutationParameters = [29 6 5 0 0];
wg.UniqueWord = "3ACFO8B13076";

Get the characteristic information about the DVB-RCS2 waveform generator.
info(wg)

ans = struct with fields:
BurstLength: 476
PayloadLengthInBytes: 115
MappingScheme: "8PSK"
CodeRate: "2/3"
PreamblelLength: 8
PostambleLength: 8
PilotPeriod: 0

2-72

dvbrcs2BitRecover

PilotBlockLength: 1
PermutationParameters: [29 6 5 0 0]
UniqueWord: "3ACF08B13076"
PilotSum: O

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU);

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = wg.SamplesPerSymbol;

EsNodB = 9;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;

cfg.IsCustomWaveform = true;

cfg.MappingScheme = wg.MappingScheme;

cfg.CodeRate = wg.CodeRate;

cfg.PermutationParameters = wg.PermutationParameters;

Get burst parameters from waveform generator info method.

burstParams = info(wg);
cfg.BurstLength = burstParams.BurstLength;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',0.2,
'InputSamplesPerSymbol',sps, ...
'‘DecimationFactor',sps);

span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay.
filtOut = rxFilter([rxIn;

complex(zeros(span/2*sps,1))1);
rxSymb = filtOut(span+l:end);

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers

of bit errors.

[rx0Out,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10”(-EsNodB/10));

fprintf('Erroneous frame PDU = %d\n', pduErr)
Erroneous frame PDU = 0
fprintf('Number of bit errors = %d\n', sum(framePDU~=rx0ut))

Number of bit errors = 0

2-73

2 Functions

Recover PDU from Burst Configuration Parameters
Recover the frame PDU for a DVB-RCS2 waveform with specified burst configuration parameters.

Set the burst configuration paramters.

Rsym = 1e6;

tSlot = 2.11e-3;
preBurstGuardOffset = 20e-6;
waveld = 39;

Symbol rate (1 Msps)

Burst time slot duration (2.11 ms)
20 microsecond

Waveform ID

o o o° o°

Set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.WaveformID = waveld; % QPSK 6/7

Compute the burst parameters in terms of symbols.

wg.PreBurstGuardLength = ceil(preBurstGuardOffset*Rsym);

params = info(wg);

burstPayLoadDuration = params.BurstLength/Rsym;

burstPostGuard = ceil((tSlot-preBurstGuardOffset-burstPayLoadDuration)*Rsym);
wg.PostBurstGuardLength = burstPostGuard;

Generate the frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols

txWaveform = wg(framePDU) ;

Add additive white Gaussian noise (AWGN) to the generated waveform.
sps = wg.SamplesPerSymbol;

EsNodB = 7;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;
cfg.WaveformID = wg.WaveformID;

Initialize a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(

'RolloffFactor', 0.20,

'"InputSamplesPerSymbol', sps, 'DecimationFactor', sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay

rxBurst rxIn(wg.PreBurstGuardLength*sps+1l:end-wg.PostBurstGuardLength*sps);
filtOut rxFilter([rxBurst;

complex(zeros(span/2*sps,1))]1);
rxSymb = filtOut(span+l:end);

2-74

dvbrcs2BitRecover

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOQut, pduErr] = dvbrcs2BitRecover(rxSymb, cfg, 10~(-EsNodB/10));
fprintf('Erroneous frame PDU = %d\n', pduErr)

Erroneous frame PDU = 0
fprintf('Number of bit errors = %d\n', sum(rxQut~=framePDU))

Number of bit errors = 0

Input Arguments

rxdata — Received complex IQ symbols
column vector

Received complex IQ symbols, specified as a column vector. rxdata must contain only one burst.
The type of waveform determines the length of rxdata.

* Reference waveform — For set values of the TransmissionFormat and WaveformID properties of
the dvbrcs2WaveformGenerator System object, the length of input rxdata must be equal to
the burst length parameter specified in ETSI EN 301 545-2 V1.2.1 (2014-11) Table A-1 and A-2 [1].

* Custom waveform — The length must be equal to the value of BurstLength property of the
dvbrcs2RecoveryConfig object.

Data Types: double
Complex Number Support: Yes

cfgrx — DVB-RCS2 recovery configuration object
dvbrcs2RecoveryConfig object

DVB-RCS2 recovery configuration object, specified as a dvbrcs2RecoveryConfig object. The
properties of this object specify the transmission parameters of the received waveform and the
decoding parameters for the recovery of the data.

nvar — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar. The function uses nvar as a scaling factor
to calculate the soft bits from the IQ symbols.

When you specify nvar as 0, the function uses a value of 1e-5, which corresponds to a signal-to-noise
ratio (SNR) of 50 dB.

Data Types: double
Output Arguments

bits — Recovered frame PDU data bits
column vector

Recovered frame PDU data bits, returned as a column vector.

2-75

2 Functions

Data Types: int8

framePDUErr — Frame PDU CRC status
trueorl| falseor®

Frame PDU CRC status, returned as a numeric or logical 1 (true) or 0 (false). A value of false
indicates the frame is erroneous.

Data Types: logical

Version History
Introduced in R2021b

References
[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Interactive Satellite Systems (DVB-RCSZ2); Part 2: Lower Layers for Satellite
Standard.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dvbrcs2RecoveryConfig | dvbrcs2WaveformGenerator

2-76

flushFilter

flushFilter

Flush transmit filter

Syntax

out = flushFilter(obj)

Description

out = flushFilter(obj) passes zeros through the transmit filter in the input waveform
generator to flush the residual data samples that remain in the filter state. The function returns the
residual data samples.

You must call the input waveform generator System object (not only create the object) prior to using
the flushFilter object function. The number of zeros passed through the transmit filter depends
on the filter delay. This object function is required for the receiver simulations to recover all of the
bits in the last physical layer frame.

Examples

Get DVB-S2 Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2WaveformGenerator System object by using the info function. Then
retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file")
if ~exist('s2xLDPCParityMatrices.zip', 'file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a Digital Video Broadcasting standard (DVB-S2) System object, and then specify its properties.

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [21 16];
s2WaveGen.DFL 47008;
s2WaveGen.ISSYI true;
s2WaveGen.SamplesPerSymbol = 2;
disp(s2WaveGen)

2-77

2 Functions

2-78

dvbs2WaveformGenerator with properties:

StreamFormat: "TS"
NumInputStreams: 2
FECFrame: "normal"
MODCOD: [21 16]
DFL: 47008
ScalingMethod: "outer radius as 1"
HasPilots: O
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 2
ISSYI: true
ISCRFormat: "short"

Show all properties

Get the characteristic information about the DVB-S2 waveform generator.
info(s2WaveGen)

ans = struct with fields:
ModulationScheme: {'16APSK' '8PSK'}
LDPCCodeIdentifier: {'5/6' '8/9'}

Create the bit vector of input information bits, data, of concatenated TS user packets.

syncBits = [0 1000 111]"'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1l,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams

numPkts = s2WaveGen.MinNumPackets(i)*numFrames;

txRawPkts = randi([0 1], pktLen,numPkts);

ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default

% 'short' implies the default length of ISSY as 2 bytes

txPkts = [repmat(syncBits,1,numPkts);txRawPkts;ISSY]; % ISSY is appended at the end of UP

data{i} = txPkts(:);
end

Generate a DVB-S2 time-domain waveform using the information bits.
txWaveform = [s2WaveGen(data)];
Check the filter residual data samples that remain in the filter delay.

flushFilter(s2WaveGen)

ans = 20x1 complex

0.0153 + 0.4565i
0.2483 + 0.5535i
0.3527 + 0.3972i
0.3541 - 0.0855i
0.3505 - 0.4071i
0.4182 - 0.1962i
0.5068 + 0.06361
0.4856 - 0.1532i
0.3523 - 0.4153i

flushFilter

0.1597 - 0.22631

Recover Data Bits from Transport Stream DVB-S2 Transmission

Recover user packets (UPs) for multiple physical layer (PL) frames in a single transport stream
Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream. Create a DVB-S2 System object.

nFrames = 2;
s2WaveGen = dvbs2WaveformGenerator;

Create the bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1 0006 111]"; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2WaveGen.MinNumPackets*nFrames;

txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];

data = txPkts(:);

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = s2WaveGen.SamplesPerSymbol;

EsNodB = 1;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',s2WaveGen.RolloffFactor,
"InputSamplesPerSymbol',sps, ...
'DecimationFactor',sps);

s = coeffs(rxFilter);

rxFilter.Gain = sum(s.Numerator);

2-79

2 Functions

Apply matched filtering and remove the filter delay.

filtOut
rxFrame

rxFilter(rxIn);
filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover UPs. Display the number of frames lost and the UP cyclic redundancy check (CRC) status.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10”(-EsNodB/10));
disp(FramesLost)

0
disp(pktCRCStat)
{20x1 logical}

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file")
if ~exist('s2xLDPCParityMatrices.zip', 'file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();

s2xWaveGen.HasTimeSlicing = true;

s2xWaveGen.NumInputStreams = 2;

s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];

s2xWaveGen.PLScramblingIndex = [0 1];

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "TS"
HasTimeSlicing: true
NumInputStreams: 2
PLSDecimalCode: [135 145]
DFL: [18048 44656]

2-80

flushFilter

PLScramblingIndex: [0 1]
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4
ISSYI: false

Show all properties
Get the characteristic information about the DVB-S2X waveform generator.
info(s2xWaveGen)
ans = struct with fields:
FECFrame: {'normal' ‘'normal'}

ModulationScheme: {'QPSK' '8PSK'}
LDPCCodeIdentifier: {'9/20' '25/36'}

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 00611 1]"'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1l, s2xWaveGen.NumInputStreams);

for i = 1l:s2xWaveGen.NumInputStreams
numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
txRawPkts = randi([0 1], pktLen, numPkts);
txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
data{i} = txPkts(:);

end

Generate a DVB-S2X time-domain waveform using the information bits.
txWaveform = s2xWaveGen(data);
Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40x1 complex

-0.2412 - 0.01431
-0.2619 - 0.08611
-0.2726 - 0.13371
-0.2511 - 0.15971
-0.1851 - 0.16801
-0.0780 - 0.16021
0.0448 - 0.1288i
0.1598 - 0.0751i
0.2482 - 0.0049i
0 0.07021

.3026 +

2-81

2 Functions

2-82

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;

tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;

tmWaveGen.Modulation = "QPSK";

tmWaveGen.CodeRate = "1/2";

disp(tmWaveGen)

ccsdsTMwWaveformGenerator with properties:

WaveformSource: "synchronization and channel coding"
HasRandomizer: true
HasASM: true
PCMFormat: "NRZ-L"

Channel coding
ChannelCoding: "LDPC"
NumBitsInInformationBlock: 1024
CodeRate: "1/2"
IsLDPCONSMTF: false

Digital modulation and filter
Modulation: "QPSK"
PulseShapingFilter: "root raised cosine"
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 10

Use get to show all properties
Specify the number of transfer frames.
numTF = 20;
Get the characteristic information about the CCSDS TM waveform generator.

info(tmWaveGen)

ans = struct with fields:
ActualCodeRate: 0.5000
NumBitsPerSymbol: 2
SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

flushFilter

flushFilter (tmWaveGen)

ans = 100x1 complex

-0.0772 - 0.08671
-0.0751 - 0.08591
-0.0673 - 0.07881
-0.0549 - 0.06541
-0.0388 - 0.04691
-0.0200 - 0.02501
0.0002 - 0.00121
0.0208 + 0.02271
0.0405 + 0.04531
0

.0587 + 0.06531

Input Arguments

obj — Waveform generator
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | ccsdsTMWaveformGenerator

Waveform generator object, specified as a dvbs2WaveformGenerator,
dvbs2xWaveformGenerator, or ccsdsTMWaveformGenerator System object.

To enable the flushFilter object function when you specify obj as a
ccsdsTMWaveformGenerator System object, you must set these dependencies in the
ccsdsTMWaveformGenerator object.

* Set the WaveformSource property to "synchronization and channel coding".
* Set the ChannelCoding property to one of these values.

° Ilnonell
° IIRSII
* "turbo"

* "LDPC" — In this case, you must also set the IsLDPCOnSMTF property to 0 (false)

* "convolutional" — In this case, you must also set the ConvolutionalCodeRate property
to either "1/2" or "2/3"

+ "concatenated" — In this case, you must also set the ConvolutionalCodeRate property to
either "1/2" or "2/3"

* Set the Modulation property to either "BPSK" or "QPSK".
Output Arguments

out — Residual data samples that remain in filter state
column vector

Residual data samples that remain in the filter state, returned as a column vector. The length of the

column vector is equal to the product of the SamplesPerSymbol and FilterSpanInSymbols
properties of the input object, obj.

2-83

2 Functions

2-84

When you specify obj as dvbs2WaveformGenerator or dvbs2xWaveformGenerator System
object and the NumInputStream property as a value greater than 1, the data fields generated from
different input streams are merged in a round-robin technique into a single stream. The residual
samples of the frame after the merging process are flushed out.

Data Types: double

Version History
Introduced in R2021a

See Also

Functions
info

Objects
ccsdsTMWaveformGenerator | dvbs2WaveformGenerator | dvbs2xWaveformGenerator

info

info
Characteristic information about object

Syntax

s = info(obj)

Description

s = info(obj) returns a structure containing the characteristic information of the specified input
object obj.

Examples

Get DVB-S2 Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2WaveformGenerator System object by using the info function. Then
retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip', 'file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a Digital Video Broadcasting standard (DVB-S2) System object, and then specify its properties.

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [21 16];
s2WaveGen.DFL 47008;
s2WaveGen.ISSYI = true;
s2WaveGen.SamplesPerSymbol = 2;
disp(s2WaveGen)

dvbs2WaveformGenerator with properties:

StreamFormat: "TS"
NumInputStreams: 2
FECFrame: "normal"
MODCOD: [21 16]

2-85

2 Functions

2-86

DFL: 47008
ScalingMethod: "outer radius as 1"
HasPilots: O
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 2
ISSYI: true
ISCRFormat: "short"

Show all properties

Get the characteristic information about the DVB-S2 waveform generator.
info(s2WaveGen)

ans = struct with fields:
ModulationScheme: {'16APSK' '8PSK'}
LDPCCodeIdentifier: {'5/6' '8/9'}

Create the bit vector of input information bits, data, of concatenated TS user packets.

syncBits = [0 1 000 111]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams

numPkts = s2WaveGen.MinNumPackets (i)*numFrames;

txRawPkts = randi([0 1], pktLen,numPkts);

ISSY = randi([0 11,16, numPkts); % ISCRFormat is 'short' by default

% 'short' implies the default length of ISSY as 2 bytes

txPkts = [repmat(syncBits,1,numPkts);txRawPkts;ISSY]; % ISSY is appended at the end of UP

data{i} = txPkts(:);
end

Generate a DVB-S2 time-domain waveform using the information bits.
txWaveform = [s2WaveGen(data)];

Check the filter residual data samples that remain in the filter delay.
flushFilter(s2WaveGen)

ans = 20x1 complex

0.0153 + 0.4565i
0.2483 + 0.5535i
0.3527 + 0.3972i
0.3541 - 0.08551
0.3505 - 0.4071i
0.4182 - 0.1962i
0.5068 + 0.06361
0.4856 - 0.1532i
0.3523 - 0.41531i
0 0.22631

.1597 -

info

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();

s2xWaveGen.HasTimeSlicing = true;

s2xWaveGen.NumInputStreams = 2;

s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];

s2xWaveGen.PLScramblingIndex = [0 1];

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "TS"
HasTimeSlicing: true
NumInputStreams: 2
PLSDecimalCode: [135 145]
DFL: [18048 446561
PLScramblingIndex: [0 1]
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4
ISSYI: false

Show all properties

Get the characteristic information about the DVB-S2X waveform generator.
info(s2xWaveGen)
ans = struct with fields:

FECFrame: {'normal' ‘'normal'}

ModulationScheme: {'QPSK' '8PSK'}
LDPCCodeIdentifier: {'9/20' '25/36'}

2-87

2 Functions

2-88

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 000 111]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(l, s2xWaveGen.NumInputStreams);

for i = 1l:s2xWaveGen.NumInputStreams
numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
txRawPkts = randi([0 1], pktLen, numPkts);
txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
data{i} = txPkts(:);

end

Generate a DVB-S2X time-domain waveform using the information bits.
txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.
flushFilter(s2xWaveGen)

ans = 40x1 complex

-0.2412 - 0.01431
-0.2619 - 0.08611
-0.2726 - 0.13371
-0.2511 - 0.15971
-0.1851 - 0.16801
-0.0780 - 0.16021
0.0448 - 0.1288i
0.1598 - 0.0751i
0.2482 - 0.0049i
0 0.07021

.3026 +

Get DVB-RCS2 Waveform Generator Information

Get information from a dvbrcs2WaveformGenerator System object by using the info object
function.

Create a DVB-RCS2 System object, and then specify its properties.

wg = dvbrcs2WaveformGenerator;
wg.ContentType = "control";
wg.WaveformID = 33;
wg.FilterSpanInSymbols = 12;
disp(wg)

dvbrcs2WaveformGenerator with properties:

TransmissionFormat: "TC-LM"
ContentType: "control"
IsCustomWaveform: false
WaveformID: 33
PreBurstGuardLength: 0

info

PostBurstGuardLength: 0
12
SamplesPerSymbol: 4

FilterSpanInSymbols:

Use get to show all properties

Get the characteristic information about the DVB-RCS2 waveform generator.

info(wg)

ans = struct with fields:

BurstLength:
PayloadLengthInBytes:
MappingScheme:
CodeRate:
PreambleLength:
PostamblelLength:
PilotPeriod:
PilotBlockLength:
PermutationParameters:
UniqueWord:

PilotSum:

566

100

"QPSK"

"3/4"

32

0

0

0

[23 10 8 2 1]
"0OC330COFF3F3033F"
0

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;

tmwWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;

tmWaveGen.Modulation = "QPSK";

tmWaveGen.CodeRate = "1/2";

disp(tmWaveGen)

ccsdsTMWaveformGenerator with properties:

WaveformSource: "synchronization and channel coding"
HasRandomizer: true
HasASM: true
PCMFormat: "NRZ-L"

Channel coding

ChannelCoding: "LDPC"
NumBitsInInformationBlock: 1024
CodeRate: "1/2"

IsLDPCONSMTF: false

Digital modulation and filter

2-89

2 Functions

Modulation: "QPSK"
PulseShapingFilter: "root raised cosine"
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 10

Use get to show all properties
Specify the number of transfer frames.
numTF = 20;
Get the characteristic information about the CCSDS TM waveform generator.
info(tmWaveGen)
ans = struct with fields:
ActualCodeRate: 0.5000

NumBitsPerSymbol: 2
SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.
flushFilter(tmWaveGen)

ans = 100x1 complex

-0.0772 - 0.08671
-0.0751 - 0.08591
-0.0673 - 0.07881
-0.0549 - 0.06541
-0.0388 - 0.04691
-0.0200 - 0.02501
0.0002 - 0.0012i
0.0208 + 0.0227i
0.0405 + 0.04531i
0 + 0.06531

.0587

Get ETSI Rician Channel Information
Get information from a etsiRicianChannel System object by using the info object function.

Create a European Telecommunication Standards Institute (ETSI) Rician channel System object, and
then specify its properties.

chan = etsiRicianChannel;

chan.SampleRate = 2e5;
chan.KFactor = 10;

2-90

info

chan.MaximumDopplerShift = 20;
chan.NumSinusoids = 58;
disp(chan)

etsiRicianChannel with properties:

SampleRate: 200000
KFactor: 10
MaximumDopplerShift: 20

Use get to show all properties

Pass data through the channel.

randi([0 1]1,500,1);
chan(txWaveform);

txWaveform
rxWaveform

Get the characteristic information about the ETSI Rician channel.
info(chan)

ans = struct with fields:
ChannelFilterDelay: 0
ChannelFilterCoefficients: 1
NumSamplesProcessed: 500

Get P.681-11 LMS Channel Information
Get channel information from a p681LMSChannel System object by using the info object function.

Create an ITU-R P681-11 LMS channel System object and specify its properties.
chan = p681LMSChannel;

chan.SampleRate = 10e3; % Hz
chan.MobileSpeed = 2; % m/s
chan.Environment = "RuralWooded";

disp(chan)

p681LMSChannel with properties:

SampleRate: 10000
InitialState: "Good"
CarrierFrequency: 2.2000e+09

ElevationAngle: 45
MobileSpeed: 2
AzimuthOrientation: 0
Environment: "RuralWooded"
ChannelFiltering: true

Use get to show all properties
QPSK-modulate a random input signal, and then pass it through the channel.
numSamples 2e4;

txWaveform pskmod(randi([0 3],numSamples,1),4);
[rxWaveform, pathGains, sampleTimes,stateSeries] = chan(txWaveform);

2-91

2 Functions

Get the characteristic information about the P681-11 LMS channel.
info(chan)

ans = struct with fields:
PathDelays: 0
ChannelFilterDelay: 0
ChannelFilterCoefficients: 1
2

NumSamplesProcessed: 20000

Transmit another QPSK-modulated random input signal through the channel

numSamples2 3e4;
txWaveform2 pskmod(randi([0 3],numSamples2,1),4);
[rxWaveform2,pathGains2,sampleTimes2,stateSeries2] = chan(txWaveform2);

Observe the change in number of samples processed.
info(chan)

ans = struct with fields:
PathDelays:
ChannelFilterDelay:
ChannelFilterCoefficients:
NumSamplesProcessed:

S0 SN oNo]

0000

Get Lutz LMS Channel Information
Get channel information from a LutzLMSChannel System object by using the info object function.

Create a Lutz LMS channel System object and specify its properties.

chan = lutzLMSChannel;
chan.SampleRate = 6000;
chan.KFactor = 20;
chan.MeanStateDuration = [8 2];
disp(chan)

lutzLMSChannel with properties:

SampleRate: 6000

InitialState: "Good"

KFactor: 20
LogNormalFading: [-8.8000 3.8000]
StateDurationDistribution: "Exponential"

MeanStateDuration: [8 2]

MaximumDopplerShift: 4.2807
ChannelFiltering: true

Show all properties

QPSK-modulate a random input signal, and then pass it through the channel.

2-92

info

numSamples 2e4;
txWaveform pskmod(randi([0 3],numSamples,1),4);
[rxWaveform, pathGains, sampleTimes,stateSeries] = chan(txWaveform);

Get the characteristic information about the Lutz LMS channel.
info(chan)

ans = struct with fields:
PathDelays: 0
ChannelFilterDelay: 0
ChannelFilterCoefficients: 1
2

NumSamplesProcessed: 20000

Transmit another QPSK-modulated random input signal through the channel

numSamples?2 3e4;
txWaveform2 pskmod(randi([0@ 3]1,numSamples2,1),4);
[rxWaveform2,pathGains2,sampleTimes2,stateSeries2] = chan(txWaveform2);

Observe the change in number of samples processed.
info(chan)

ans = struct with fields:
PathDelays:
ChannelFilterDelay:
ChannelFilterCoefficients:
NumSamplesProcessed:

00 SN oNo]

0000

Get P-Code State Information

Get information from a gpsPCode System object™ by using the info object function. Observe how
the precision of initial time impacts the generation of the P-code.

Create a P-code generator System object™, and then specify its properties.

format long
pgen = gpsPCode

pgen =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230
InitialStateFormat: "seconds"
InitialTime: O

pgen.InitialStateFormat = "chips";
pgen.InitialNumChipsElapsed = 8388600;

Get the characteristic information about the P-code generator.

pgen.info

2-93

2 Functions

ans = struct with fields:
TotalNumChipsElapsed: 8388600
TotalSecondsElapsed: 0.820000000000000

Advance the time by a quarter of a P-code chip time (that is, 0.25/10.23e6).

pgenl = gpsPCode;
pgenl.InitialTime = pgen.info.TotalSecondsElapsed + 0.25/10.23e6

pgenl =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230
InitialStateFormat: "seconds"
InitialTime: 0.820000024437928

pgenl.info

ans = struct with fields:
TotalNumChipsElapsed: 8388600
TotalSecondsElapsed: 0.820000000000000

The info function output shows no increment in the TotalNumChipsElapsed in this case, because
TotalNumChipsElapsed is calculated internally using the function round.

Advance the time by half of a P-code chip time now (that is, 0.5/10.23€6).

pgen2 = gpsPCode;
pgen2.InitialTime = pgen.info.TotalSecondsElapsed + 0.5/10.23e6

pgen2 =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230
InitialStateFormat: "seconds"
InitialTime: 0.820000048875855

pgen2.info

ans = struct with fields:
TotalNumChipsElapsed: 8388601
TotalSecondsElapsed: 0.820000097751711

The info function output now shows the TotalNumChipsElapsed is incremented by one, due to the
internal usage of round() function.

Compare the output of each System object call.

code = pgen();

codel = pgenl();

code2 = pgen2();

isequal(code, codel) % code and codel are equal

2-94

info

ans = logical
1

isequal(codel,code2) % codel and code2 are unequal

ans = logical
0

Input Arguments

obj — Input object

dvbs2WaveformGenerator | dvbs2xWaveformGenerator | dvbrcs2WaveformGenerator |
ccsdsTMWaveformGenerator | etsiRicianChannel | p681LMSChannel | lutzLMSChannel |
gpsPCode

Input object to get information from, specified as a dvbs2WaveformGenerator,
dvbs2xWaveformGenerator, dvbrcs2WaveformGenerator, ccsdsTMWaveformGenerator,
etsiRicianChannel, p681LMSChannel, LutzLMSChannel, or gpsPCode System object.

Output Arguments

s — Characteristic information of specified object
structure

Characteristic information of the specified object, returned as a structure. The fields of the structure

depend on the obj input.

+ Ifobjisadvbs2WaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Satellite Second
Generation (DVB-S2) waveform generator.

equal to the

of the

Field Value Description
ModulationScheme String scalar (default) or cell |Modulation scheme, returned
array of character vectors as a string scalar for single-

input stream and a cell array
of character vectors of length

NumInputStreams property

dvbs2WaveformGenerator
object for multi-input streams.

2-95

2 Functions

2-96

Field

Value

Description

LDPCCodeldentifier

String scalar (default) or cell
array of character vectors

LDPC code identifier used in
forward error correction
(FEC), returned as a string
scalar for single-input stream
and a cell array of character
vectors of length equal to
NumInputStreams property
of the
dvbs2WaveformGenerator
object for multi-input streams.

If obj is a dvbs2xWaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Satellite Second
Generation extended (DVB-S2X) waveform generator.

Field

Value

Description

FECFrame

String scalar (default) or cell
array of character vectors

FEC frame format, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to NumInputStreams
property of
dvbs2xWaveformGenerator
object for multi-input streams.

ModulationScheme

String scalar (default) or cell
array of character vectors

Modulation scheme, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to NumInputStreams
property of
dvbs2xWaveformGenerator
object for multi-input streams.

LDPCCodeldentifier

String scalar (default) or cell
array of character vectors

LDPC code identifier used in
forward error correction
(FEC), returned as a string
scalar for single-input stream
and a cell array of character
vectors of length equal to
NumInputStreams property
of
dvbs2xWaveformGenerator
object for multi-input streams.

If obj is a dvbrcs2WaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Second Generation
Return Channel over Satellite (DVB-RCS2) waveform generator.

info

Field Value Description
BurstLength positive integer Length of the burst, in
symbols, prior to the pulse
shaping, returned as a
positive integer.
PayloadLengthInBytes integer in the range [3, Input data length, in bytes, to
65,535] the forward error correction
(FEC) encoder, returned as an
integer in the range [3,
65,535].
MappingScheme "pi/2-BPSK", "QPSK", Symbol mapping and
"8PSK", or "16QAM" modulation scheme to
generate the DVB-RCS2
waveform, returned as
"pi/2-BPSK", "QPSK",
"8PSK", or "16QAM".
CodeRate "1/3", "1/2","2/3", Code rate of the channel
"3/4", "4/5", "5/6", encoder, returned as "1/3",
"6/7",0r"7/8" “1/2","2/3", "3/4",
“4/5","5/6", "6/7", or
“7/8".
PreamblelLength integer in the range [0, 255] |Number of preamble symbols

that are prefixed to the burst
symbols prior to the
modulation, returned as an
integer in the range [0, 255].

When you set the
TransmissionFormat
property to "TC-LM", the unit
of preamble length is symbols.
When you set the
TransmissionFormat
property to "SS-TC-LM", the
unit of preamble length is
chips.

2-97

2 Functions

2-98

Field

Value

Description

PostamblelLength

integer in the range [0, 255]

Number of postamble symbols
that are suffixed to the burst
symbols, prior to the
modulation, returned as an
integer in the range [0, 255].

When you set the
TransmissionFormat
property to "TC-LM", the unit
of preamble length is symbols.
When you set the
TransmissionFormat
property to "SS-TC-LM", the
unit of preamble length is
chips.

PilotPeriod

integer in the range [0, 4095]

Pilot symbol periodicity,
including the burst symbols,
returned as an integer in the
range [0, 4095].

This period represents the
length of the sequence from
the first symbol of a pilot
block to the first symbol of the
next pilot block in symbols or
chips.

PilotBlockLength

integer in the range [1, 255]

Length of the pilot block, in
symbols, returned as an
integer in the range [1, 255].

PermutationParameters

five-element vector

DVB-RCS2 turbo encoder
permutation control
parameters that are used to
generate turbo encoder
interleaver indices, returned
as a five-element vector in

order: P, Qo, Q;, Q,, and Q5.

UniqueWord

character array or string
scalar

Hexadecimal string consisting
of combined symbols of the
preamble, one pilot block, and
the postamble sequence,
returned as a character array
or string scalar.

If obj is a ccsdsTMWaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Consultative Committee for Space Data Systems
(CCSDS) Telemetry (TM) waveform generator.

info

Field

Value

Description

ActualCodeRate

positive scalar in range [0 1]

Numeric value of the code
rate of the channel coding
scheme, returned as a positive
scalar in the range [0, 1]. This
value is used to generate the
CCSDS TM waveform.

NumBitsPerSymbol

positive integer

Number of bits per modulated
symbol, returned as a positive
integer.

SubcarrierFrequency

positive scalar

Subcarrier frequency,
returned as a positive scalar.
This field is applicable only
when the Modulation
property of
ccsdsTMWaveformGenerato
r object is set to "PCM/PSK/
PM". For other cases, this
value is returned as null.

If obj is an etsiRicianChannel System object, the output structure has these fields, consisting
of information about the fading channel.

Field Value Description

ChannelFilterDelay 0 Channel filter delay in
samples returned as 0 always
(due to flat fading nature of
the channel).

ChannelFilterCoefficien |1 Channel filter coefficient used

ts

to convert path gains to
channel filter tap gains,
returned as 1 always (as
etsiRicianChannel
describes a single path
channel).

NumSamplesProcessed

positive integer

Number of samples processed
by the channel object since
the last reset, returned as a
positive integer.

If obj is a p681LMSChannel System object, the output structure has these fields, consisting of
information about the ITU-R P.681-11 land-mobile satellite (LMS) fading channel.

Field

Value

Description

PathDelays

0

Delay of discrete channel path
in seconds returned as 0
always (due to flat fading
nature of the channel).

2-99

2 Functions

2-100

Field Value Description

ChannelFilterDelay 0 Channel filter delay in
samples returned as 0 always
(due to flat fading nature of
the channel).

ChannelFilterCoefficien |1 Channel filter coefficient used

ts

to convert path gains to
channel filter tap gains,
returned as 1 always (as
p681LMSChannel describes a
single path channel).

NumSamplesProcessed

nonnegative integer

Number of samples processed
by the channel object since
the last reset, returned as a
nonnegative integer.

If obj is a LlutzLMSChannel System object, the output structure has these fields, consisting of
information about the Lutz LMS fading channel.

Field

Value

Description

PathDelays

0

Delay of discrete channel path
in seconds returned as 0
always (due to flat fading
nature of the channel).

ChannelFilterDelay

Channel filter delay in
samples returned as 0 always
(due to flat fading nature of
the channel).

ChannelFilterCoefficien
ts

Channel filter coefficient used
to convert path gains to
channel filter tap gains,
returned as 1 always (as
lutzLMSChannel describes a
single path channel).

NumSamplesProcessed

nonnegative integer

Number of samples processed
by the channel object since
the last release or reset,
returned as a nonnegative
integer.

If obj is a gpsPCode System object, the output structure has these fields, consisting of state
information about the GPS P-code generator.

info

Field Value Description
TotalNumChipsElapsed positive integer Total number of P-code chips
that elapsed from the

beginning of the week,
returned as a positive integer.
The beginning of a week is
marked at midnight Saturday
night - Sunday morning.
TotalSecondsElapsed real-valued scalar Total seconds elapsed from
the beginning of the week,

returned as a real-valued
scalar.

Version History
Introduced in R2021a

See Also

Functions
flushFilter

Objects

dvbs2WaveformGenerator | dvbs2xWaveformGenerator | dvbrcs2WaveformGenerator |
ccsdsTMWaveformGenerator | etsiRicianChannel | p681LMSChannel | LutzLMSChannel |
gpsPCode

2-101

2 Functions

2-102

read

Read next VITA 49 packet from file

Syntax

[signalDataPacket, contextPacket, contextPacketChangeIndex] = read(
vita49Reader0bj)
[1 = read(vita49Reader0bj,Name=Value)

Description

[signalDataPacket, contextPacket, contextPacketChangeIndex] = read(
vita49Reader0bj) reads the next packet from the VMEDbus International Trade Association (VITA)
49 file specified by the input VITA 49 file reader object, vita49Reader0bj, and returns the signal
data packet, signalDataPacket, and context packet, contextPacket. The function also returns
the starting indices of the signal data packets after any new context packet arrival, in
contextPacketChangeIndex.

[] = read(vitad49Reader0bj,Name=Value) specifies one or more optional name-value
arguments, in addition to the output arguments from the previous syntax. For example, St reamID=2
sets the stream identifier to 2.

Examples

Read Specified Number of Packets from File

Create a VITA 49 file reader object, specifying the name of a VITA 49 file and an output format for the
packet timestamp.

vitad49ReaderObj = vitad49Reader("VITA49SampleData.bin");
vita49Reader0Obj.QutputTimestampFormat = "seconds";

Specify the number of packets to be read from the file.
numpkt = 11;

Read the specified number of packets from the VITA 49 file to the MATLAB® workspace.

[signalDataPacket, contextPacket, contextPacketChangeIndex] = read(vita49Reader0bj,NumPackets=numpl

signalDataPacket = struct with fields:
PacketType: 1
StreamID: 0
ClassID: "7C386C0000"
PadBitCount: 0
IntegerTimestampType: "GPS"
IntegerTimestampValue: 1625215654
FractionalTimestampType: "real time"
FractionalTimestampValue: 900000344000
RawBytes: [1472x1 uint8]

read

IQSamples: [361x1 double]
Trailer: [1x1 struct]

contextPacket=1x10 struct array with fields:
PacketType
StreamID
ClassID
IntegerTimestampType
IntegerTimestampValue
FractionalTimestampType
FractionalTimestampValue
RawBytes
ContextFieldChangelndicator
ReferencePointIdentifier
Bandwidth
IFReferenceFrequency
RFFrequency
RFFrequencyOffset
IFBandOffset
ReferencelLevel
Gain
OverRangeCount
SampleRate
TimestampAdjustment
TimestampCalibrationTime
StateAndEventIndicator
SignalDataPayloadFormat

contextPacketChangeIndex = 1Ix10

0 0 0 0 0 0 0 0 0 1

Read Packets in Streaming Mode from File

Create a VITA 49 file reader object, specifying the name of a VITA 49 file.
vitad49ReaderObj = vitad49Reader("VITA49SampleData.bin");

Set the stream identifier as 1, class identifier as "736C860000", and packet type as signal data
packet.

pktType = "signal data";
streamID = 0;
classID = "7C386C0000";

In streaming mode, read the VITA 49 packets that match the specified filters to the MATLAB
workspace.

for idx = 1:3
signalDataPacket = read(vita49ReaderObj, ...
PacketType=pktType,StreamID=streamID,ClassID=classID)
end

2-103

2 Functions

signalDataPacket = struct with fields:
PacketType: 1
StreamID: 0
ClassID: "7C386C0000"
PadBitCount: 0
IntegerTimestampType: "GPS"
IntegerTimestampValue: 1625215654
FractionalTimestampType: "real time"
FractionalTimestampValue: 900000344000
RawBytes: [1472x1 uint8]
IQSamples: [361x1 double]
Trailer: [1x1 struct]

signalDataPacket = struct with fields:
PacketType: 1
StreamID: ©
ClassID: "7C386C0000"
PadBitCount: 0
IntegerTimestampType: "GPS"
IntegerTimestampValue: 1625215654
FractionalTimestampType: "real time"
FractionalTimestampValue: 900042328000

RawBytes: [1472x1 uint8]
IQSamples: [361x1 double]
Trailer: [1x1 struct]

signalDataPacket = struct with fields:
PacketType: 1
StreamID: ©
ClassID: "7C386C0000"
PadBitCount: 0
IntegerTimestampType: "GPS"
IntegerTimestampValue: 1625215654
FractionalTimestampType: "real time"
FractionalTimestampValue: 900084248000

RawBytes: [1472x1 uint8]
IQSamples: [361x1 double]
Trailer: [1x1 struct]

Input Arguments

vita49ReaderObj — VITA 49 file reader
vitad49Reader object

VITA 49 file reader, specified as a vita49Reader object.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

2-104

read

Example: StreamID=2 sets the stream identifier to 2.

PacketType — Type of packet to be read
"signal data"| "context"

Type of packet to be read, specified as "signal data" or "context". If you do not specify this
argument, the function reads the next packet from the file.

Data Types: char | string

NumPackets — Number of packets to be read
1 (default) | positive integer

Number of packets to be read, specified as a positive integer.

Data Types: double

StreamID — Stream identifier
nonnegative integer

Stream identifier, specified as a nonnegative integer.

If you specify StreamID, the function identifies the packets belonging to only the specified ID from
the packet stream.

Data Types: uint32

ClassID — Class identifier
character vector | string scalar

Class identifier, specified as a character vector or string scalar.

A class identifier is a 5-byte-long, hex-formatted string that includes three bytes of Organizational
Unique Identifier (OUI) information and two bytes of information class code.

Data Types: char | string

Output Arguments

signalDataPacket — Decoded signal data packet
structure

Decoded signal data packet, returned as a structure containing these fields.

Field Description Value
PacketType Type of VITA 49 packet, returned as one of these values. |Integer in the
range [0, 5]

* 0,1, 2, or 3 — Indicates signal time data packet
* 4 or5 — Indicates context packet

StreamID Stream ID, as specified by the name-value argument 32-bit
StreamlID. unsigned
integer

2-105

2 Functions

2-106

Field Description Value
ClassID Class ID, as specified by the name-value argument Character
ClassID. vector or
string scalar
PadBitCount Pad bit count is the difference between the nearest 8-bit unsigned
multiple of 32 and the actual number of payload bits to |integer
pack, returned as a nonnegative integer. Pad bits are
required when the size and number of data items do not
completely fill the last 32-bit word of a data packet.
IntegerTimestampType |Integer timestamp type, returned as "UTC", "GPS", or a |Character
user-specified time-code. vector or
string scalar
IntegerTimestampValu |Integer timestamp value, in seconds. This value 32-bit
e represents the Reference Point Time of data samples or |unsigned
metadata in the packet, returned to 1-second resolution |integer
accuracy.
FractionalTimestampT |Fractional timestamp, returned as "sample count", Character
ype "real time", or "free running count". vector or
string scalar
When this value is "sample count" or "real time",
the FractionalTimestampValue value adds
resolution to the IntegerTimestampValue value, so
that together they provide a range of years and a
precision down to sample period or picoseconds,
respectively. When returned as "free running
count", the value provides an incrementing sample
count from any chosen starting time.
FractionalTimestampV |Fractional timestamp value in picoseconds, represents |64-bit
alue the Reference Point Time of data samples or metadata in [unsigned
the packet, returned as a timestamp of higher resolution |integer
than the integer timestamp value.
RawBytes Raw payload in bytes, which is not decoded, returned as |Column vector
a column vector. with 8-bit
unsigned
integer
elements
IQSamples Decoded real or complex in-phase quadrature (IQ) Column vector

Cartesian samples of the signal data, returned as a
column vector.

This function does not support decoding of complex
Polar samples.

with elements
of data type
double

read

Field

Description

Value

Trailer

Validity of the decoded data and the status of the
processes producing that data, returned as a structure

with these fields.

Field

Description

CalibratedTimeIndicat
or

Calibrated time indicator,
returned as one of these
logical values.

e 1 — Indicates the
timestamp in the signal
data packet is
calibrated to some
external reference

* 0 — Indicates the
timestamp is free
running and may be
inaccurate

ValidDataIndicator

Valid data indicator,
returned as a logical value
of 1 or 0. When returned
as 1, it indicates the data
packet as valid.

ReferencelLockIndicato
r

Reference lock indicator,
returned as one of these
logical values.

* 1 — Indicates any
phase-locked loops
(PLL) affecting the data
are locked and stable

¢ 0 — Indicates at least
one PLL is not locked
and stable

AGCIndicator

AGC indicator, returned as
one of these logical values.

¢ 1 — Indicates AGC is
active

¢ 0 — Indicates MGC is
active

MGCIndicator

MGC indicator, returned as
one of these logical values.

¢ 1 — Indicates MGC is
active

¢ 0 — Indicates AGC is
active

Structure

2-107

2 Functions

2-108

Field

Description

Value

Field

Description

DetectedSignallndicat
or

Detected signal indicator,
returned as a logical value
of 1 or 0. When returned
as 1, it indicates that the
data contained in the
packet has some detected
signal.

SpectrumInversionIndi
cator

Spectrum inversion
indicator, returned as a
logical value of 1 or 0.
When returned as 1, it
indicates that the signal
conveyed in the data
payload has an inverted
spectrum with respect to
the spectrum of the signal
at the system Reference
Point.

OverRangeIndicator

Over range indicator,
returned as a logical value
of 1 or 0. When returned
as 1, it indicates that at
least one data sample in
the payload is invalid due
to the signal exceeding the
range of the data item.

SamplelLossIndicator

Sample loss indicator,
returned as a logical value
of 1 or 0. When returned
as 1, it indicates that the
packet contains at least
one sample discontinuity
due to processing errors or
buffer overflow.

AssociatedContextPack
etCount

Associated context packet
count, returned as a 7-bit
unsigned integer. This
count includes the
associated context packets
transmitted by a process
other than the one that
transmits the signal data
packet containing the
count.

Data Types: struct

read

contextPacket — Decoded context packet

structure

Decoded context packet, returned as a structure containing these fields.

returned as "UTC", "GPS", or a
user-specified time-code.

Field Description Value
PacketType Type of VITA 49 packet, Integer in the range [0, 5]
returned as one of these values.
* 0,1, 2, or 3 — Indicates
signal time data packet
* 4 or5 — Indicates context
packet
StreamID Stream ID, as specified by the |32-bit unsigned integer
name-value argument
StreamID.
ClassID Class ID, as specified by the Character vector or string
name-value argument ClassID. |scalar
IntegerTimestampType Integer timestamp type, Character vector or string

scalar

IntegerTimestampValue

Integer timestamp value, in
seconds. This value represents
the Reference Point Time of
data samples or metadata in the
packet, returned to 1-second
resolution accuracy.

32-bit unsigned integer

FractionalTimestampType

Fractional timestamp, returned
as "sample count", "real
time", or "free running
count".

When this value is "sample
count" or "real time", the
FractionalTimestampValue
value adds resolution to the
IntegerTimestampValue
value, so that together they
provide a range of years and a
precision down to sample period
or picoseconds, respectively.
When returned as "free
running count", the value
provides an incrementing
sample count from any chosen
starting time.

Character vector or string
scalar

2-109

2 Functions

2-110

Field

Description

Value

FractionalTimestampValue

Fractional timestamp value in
picoseconds, represents the
Reference Point Time of data
samples or metadata in the
packet, returned as a timestamp
of higher resolution than the
integer timestamp value.

64-bit unsigned integer

RawBytes

Raw payload in bytes, which is
not decoded, returned as a
column vector.

Column vector with 8-bit
unsigned integer elements

ContextFieldChangeIndica
tor

Bit indicator returned as 0
(false)or 1 (true). A value of
1 indicates that at least one
context field contains a new
value.

0 (false)or 1 (true)

ReferencePointIdentifier

Reference point ID consists of
the StreamID of the reference
point, returned as a nonnegative
integer.

32-bit unsigned integer

Bandwidth

Usable spectrum at the output
of a communication channel,
returned as a nonnegative
scalar in hertz.

Nonnegative scalar

IFReferenceFrequency

Intermediate frequency (IF) at
which a carrier wave shifts as
an intermediate step in
transmission or reception of the
signal, returned as a real scalar
in hertz.

Real scalar

RFFrequency

Location in the signal path that
corresponds to the original
frequency, returned as a real
scalar in hertz.

Real scalar

RFFrequencyOffset

Intentional slight deviation of
the broadcast radio frequency
(RF) to reduce the interference
with other transmitters,
returned as a real scalar in
hertz.

Real scalar

IFBandOffset

IF offset from the
IFReferenceFrequency to the
center of the band, returned as
a real scalar in hertz.

Real scalar

read

Field

Description

Value

ReferencelLevel

Physical signal amplitude at a
reference point relative to the
corresponding data sample
value, returned as a real scalar
in dB.

Real scalar

Gain

Amount of signal gain or signal
attenuation from the reference
point, returned as a real scalar
in dB.

Real scalar

OverRangeCount

Number of data samples in the
paired data packet whose
amplitudes are beyond the
range of the data item format,
returned as a nonnegative
integer in dB.

32-bit unsigned integer

SampleRate

Sampling rate of the data
samples in the payload of a
paired data packet stream,
returned as a positive integer in
hertz.

Positive integer

2-111

2 Functions

2-112

Field

Description

Value

TimeStampAdjustment

Delay used to adjust the
timestamp information of the
first packet of the file, returned
as a structure with these fields.

Field

Description

GlobalTimes
tamp

Global
timestamp
indicator;
returned as
one of these
logical values.

0 1 —
Indicates
the
timestamp
details
apply
globally to
all packets
in the
information
stream

. 0 —
Indicates
the
timestamp
details
apply only
to the
context
stream and
the paired
data stream

TSECode

Indicates the
type of
TimestampEp
och provided,
returned as
"Unspecifie
d", "uTtc",
"GPS", or
"POSIX".

TimestampEp
och

Conveys the
time in one of
these formats,
depending on
the value of

Structure

read

Field

Description

Value

Field

Description

the TSECode
field.

o Ifthe
TSECode
field is
returned as
"uTC",
then
timestamp
epoch
conveys
time in the
UTC epoch.
The value
returned
provides
the time of
the start of
the epoch
in
internation
al system of
units (SI)
seconds,
including
leap
seconds,
since
1970-01-01
T00:00:00Z
(UTC).

o Ifthe
TSECode
field is
returned as
"GPS",
then
timestamp
epoch
conveys
time in the
GPS epoch.
The value
returned
provides
the time of
the start of
the epoch

2-113

2 Functions

Field

Description

Value

2-114

Field

Description

used in SI
seconds,
since
1980-01-06
T00:00:00Z
(UTC).
Leap
seconds are
not
applicable
within the
GPS epoch.

e If the
TSECode
field is
returned as
"POSIX",
then
timestamp
epoch
conveys
time in the
POSIX
epoch. The
value
returned
provides
the time of
the start of
the epoch
used in
nominal
seconds,
since
1970-01-01
T00:00:00Z
(UTC).
Leap
seconds are
not
applicable
within the
POSIX
epoch.

LeapSecondH
andle

Indicates how
the leap
seconds are
handled in the

read

Field

Description

Value

Field

Description

packet
timestamps,
returned as
"Not
applicable",
"normal",
"duplicatio
n", or
"overflow".

SecSchedule
dPerDay

Indicates the
number of
seconds in the
current day
denoted by the
packet
timestamps,
returned as 0,
86399, 86400,
or 86401
seconds.

TimeSource

Indicates the
time reference
source used,
returned as
"Unspecifie
d", "Atomic
Clock",
"Satellite
System"”,
"Terrestria
1 Radio",
"PTP", "NTP
or SNTP", or
"Not
Defined".

PosixTimebu
fferOffset

Conveys the
difference in
seconds
between UTC
time and
POSIX time,
returned as a
8-bit unsigned
integer. This
value
represents the
current total

2-115

2 Functions

2-116

Field Description Value
Field Description
leap seconds
count.

TimestampCalibrationTime

Conveys the date and time at
which the timestamp in the data
signal packet and context
packet was confirmed accurate,
returned as a nonnegative
integer.

32-bit unsigned integer

read

Field

Description

Value

StateAndEventIndicator

Conveys a set of binary
indications and a limited
number of non-binary state
indications, returned as a
structure with these fields.

This structure field is equivalent
to be the Trailer field of the
signalDataPacket output
argument structure.

Field

Description

CalibratedT
imeIndicato
r

Calibrated
time indicator,
returned as
one of these
logical values.

. 1 —
Indicates
the
timestamp
in the
signal data
packet is
calibrated
to some
external
reference

L] 0 J—
Indicates
the
timestamp
is free
running
and may be
inaccurate

ValidDatalIn
dicator

Valid data
indicator,
returned as a
logical value of
1 or 0. When
returned as 1,
it indicates the
data packet as
valid.

ReferencelLo
ckIndicator

Reference lock
indicator,
returned as

Structure

2-117

2 Functions

Field

Description

Value

2-118

Field

Description

one of these
logical values.

. 1 —
Indicates
any phase-
locked
loops (PLL)
affecting
the data
are locked
and stable

. 0 I
Indicates at
least one
PLL is not
locked and
stable

AGCIndicato
-

AGC indicator,
returned as
one of these
logical values.

. 1—
Indicates
AGC is
active

. 0 —
Indicates
MGC is
active

MGCIndicato
-

MGC indicator,
returned as
one of these
logical values.

. 1—
Indicates
MGC is
active

. 0 —
Indicates
AGC is
active

DetectedSig
nalIndicato
-

Detected
signal
indicator,

returned as a

read

Field

Description

Value

Field

Description

logical value of
1 or 0. When
returned as 1,
it indicates
that the data
contained in
the packet has
some detected
signal.

SpectrumInv
ersionIndic
ator

Spectrum
inversion
indicator,
returned as a
logical value of
1 or 0. When
returned as 1,
it indicates
that the signal
conveyed in
the data
payload has an
inverted
spectrum with
respect to the
spectrum of
the signal at
the system
Reference
Point.

OverRangeIn
dicator

Over range
indicator;
returned as a
logical value of
1 or 0. When
returned as 1,
it indicates
that at least
one data
sample in the
payload is
invalid due to
the signal
exceeding the
range of the
data item.

SamplelLossI
ndicator

Sample loss
indicator,
returned as a

2-119

2 Functions

2-120

Field

Description

Value

Field

Description

logical value of
1 or 0. When
returned as 1,
it indicates
that the packet
contains at
least one
sample
discontinuity
due to
processing
errors or
buffer
overflow.

AssociatedC
ontextPacke
tCount

Associated
context packet
count,
returned as a
7-bit unsigned
integer. This
count includes
the associated
context
packets
transmitted by
a process
other than the
one that
transmits the
signal data
packet
containing the
count.

read

Field

Description

Value

SignalDataPayloadFormat

Consists of the format of the
real or complex signal data (of
either 8, 16, or 32 bits) and the
data item size, returned as a
structure with these fields.

Field

Description

LinkEfficie
ntPacking

Link-efficient
packing
indicator;
returned as
one of these
logical values.

0 1 —
Indicates
link-
efficient
packing is
used in the
paired data
packet
stream

. 0 —
Indicates
processing-
efficient
packing is
used

DataSampleT
ype

Indicates
whether the
data samples
are real or
complex
Cartesian
samples.

DataltemFor
mat

Five-bit code
that indicates
the type of
data items
used in the
paired data
packet stream.
This function
supports the
decimal values
of 0 (signed
fixed-point)
and 16

Structure

2-121

2 Functions

2-122

Field

Description

Value

Field

Description

(unsigned
fixed-point).

RepeatCount
Indicator

Repeat count
indicator,
returned as a
logical value of
1 or 0. When
returned as 1,
it indicates
sample
component
repeating in
the paired data
packet stream.

EventTagSiz
e

Event tag size
field value
used in the
paired data
packet stream,
returned as a
3-bit unsigned
integer.

ChannelTag$S
ize

Channel tag
size field value
used in the
paired data
packet stream,
returned as a
4-bit unsigned
integer.

DataltemFra
ctionSize

Number of bits
in the fraction
of a non-
normalized
number of the
format
integer.fractio
n, where the
total size of
the number is
given by the
data item size
field. The value
is returned as
a 4-bit
unsigned
integer.

read

Field

Description

Value

Field

Description

ItemPacking
FieldSize

Item packing
field size,
returned as a
6-bit unsigned
integer. The
value is one
less than the
actual item
packing size
used in the
paired data
packet stream.

DataltemSiz
e

Data item size,
returned as a
6-bit unsigned
integer. This
value is one
less than the
actual data
item size used
in the paired
data packet
stream.

RepeatCount

Repeat count,
returned as a
16-bit
unsigned
integer. This
value is one
less than the
actual repeat
count used in
the paired data
packet stream.

VectorSize

Vector size,
returned as a
16-bit
unsigned
integer. This
value is one
less than the
actual vector
size used in
the paired data
packet stream.

Data Types: struct

2-123

2 Functions

2-124

contextPacketChangeIndex — Starting indices of signal data packets after any new
context packet arrival
array of nonnegative integers

Starting indices of the signal data packets after any new context packet arrival, returned as an array
of nonnegative integers.

When two context packets arrive one after another, the corresponding value returned is two zeros.

Data Types: double

Version History
Introduced in R2022b
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation is available only when the QutputTimestampFormat property of the
vitad49Reader object is set to the default value of "seconds".

See Also

Objects
vitad49Reader

Functions
reset

Topics
“VITA 49 File Reader”

reset

reset

Reset VITA 49 file reader to first VITA 49 packet of file

Syntax

reset(vita49Reader0bj)

Description

reset(vitad4d9Reader0Obj) resets the VITA 49 file reader to the first VITA 49 packet of the file. This
function resets the number of signal data and context packets traversed to zero.

Examples

Reset VITA 49 File Reader

Create a VITA 49 file reader object, specifying the name of a VITA 49 file.

vitad49ReaderObj = vitad49Reader("VITA49SampleData.bin");

Specify the number of packets to be read.

numpkt = 4;

Read the specified number of packets to the MATLAB® workspace.
[signalDataPacket, contextPacket, contextPacketChangeIndex] = read(vita49Reader0Obj,NumPackets = nur

Display the number of packets read by the object. Because you specified for the function to read 4
packets, the number of packets read is 4.

numPacketsRead = vita49ReaderObj.PacketsRead

numPacketsRead 4

Reset the position of the VITA 49 file reader to the first packet of the VITA 49 file.
reset (vita49Reader0bj);

Display the number of packets read by the object. Since the reset object function resets the position
of the file reader object to the first VITA 49 packet of the file, the value reflects @ packets read. Read
a packet from the object..

numPacketsReadl = vitad49ReaderObj.PacketsRead

0

numPacketsReadl

[signalDataPacketl, contextPacketl, contextPacketChangeIndexl] = read(vita49Reader0bj);

Display the number of packets read. Because you did not specify a number of packets to read, only
the first packet of the VITA 49 file has been read.

2-125

2 Functions

2-126

numPacketsRead?2

vita49Reader0Obj.PacketsRead

numPacketsRead?2 1

Input Arguments

vita49ReaderObj — VITA 49 file reader
vitad49Reader object

VITA 49 file reader, specified as a vitad49Reader object.

Version History
Introduced in R2022b
See Also

Objects
vitad49Reader

Functions
read

Topics
“VITA 49 File Reader”

satelliteCNR

satelliteCNR

Carrier-to-noise ratio for configured satellite link budget parameters

Syntax

[cn,info] = satelliteCNR(cfg)

Description
[cn,info] = satelliteCNR(cfg) computes the carrier-to-noise ratio (CNR) cn for the satellite

link budget parameters specified in the configuration cfg. The function also returns the intermediate
results in the CNR calculation info based on the link budget parameters specified in cfg.

Examples

Calculate CNR and Link Margin
Calculate the CNR and the received link margin for the specified link budget parameters.

Create a default CNR configuration object, and then set its properties.

cfg = satelliteCNRConfig;

cfg.TransmitterPower = 17; % in dBW
cfg.TransmitterSystemLoss = 9; % in dB
cfg.TransmitterAntennaGain = 38; % in dBi
cfg.Distance = 40215; % in km
cfg.Frequency = 11; % in GHz

% Here, miscellaneous losses include polarization loss, interference
% loss, and antenna mispointing loss, respectively.

polLoss = 3.0103;

intLoss = 2;

antlLoss = 1;

cfg.MiscellaneousLoss = polLoss + intLoss + antLoss; % in dB
cfg.GainToNoiseTemperatureRatio = 25; % in dB/K
cfg.ReceiverSystemLoss = 2; % in dB
cfg.BitRate = 10; % in Mbps

Display the CNR configuration object properties.
disp(cfg)
satelliteCNRConfig with properties:

TransmitterPower: 17
TransmitterSystemLoss: 9
TransmitterAntennaGain: 38

Distance: 40215
Frequency: 11
MiscellaneousLoss: 6.0103
GainToNoiseTemperatureRatio: 25

2-127

2 Functions

ReceiverSystemLoss: 2
BitRate: 10
SymbolRate: 10
Bandwidth: 6

Calculate the CNR.
[cn,info] = satelliteCNR(cfg)
cn = 18.4440
info = struct with fields:
TransmitterEIRP: 46
FSPL: 205.3634
ReceivedIsotropicPower: -165.3737
CarrierToNoiseDensityRatio: 86.2255

ReceivedEbNo: 16.2255
ReceivedEsNo: 16.2255

Compute the link margin. Assume a required energy per bit to noise power density ratio (Eb/No) of
10 dB and an implementation loss of 2 dB in the receiver.

regEbNo = 10;

implLoss = 2;

margin = info.ReceivedEbNo - reqEbNo - implLoss

margin = 4.2255

Input Arguments

cfg — CNR configuration object
satelliteCNRConfig object

CNR configuration object, specified as a satelliteCNRConfig object.

Output Arguments

cn — Carrier-to-noise ratio
scalar

Carrier-to-noise ratio in dB, returned as a scalar.

Data Types: double

info — Intermediate results in CNR calculation
structure

Intermediate results in the CNR calculation, based on the link budget parameters specified in the
configuration object cfg returned as a structure with these fields.

2-128

satelliteCNR

Structure Field

Description

TransmitterEIRP Effective isotropic radiated power (EIRP) of the
transmitter antenna, returned as a scalar. Value is
in dBW.

FSPL Free space path loss (FSPL) from the transmitter

to the receiver antenna, returned as a scalar.
Value is in dB.

ReceivedIsotropicPower

Received isotropic power at the receiver antenna,
returned as a scalar. Value is in dBW.

CarrierToNoiseDensityRatio

Carrier-to-noise power density ratio (C/No),
returned as a scalar. Value is in dB-Hz.

ReceivedEbNo Received energy per bit to noise power density
ratio (Eb/No), returned as a scalar. Value is in dB.
ReceivedEsNo Received energy per symbol to noise power

density ratio (Es/No), returned as a scalar. Value
is in dB.

All fields in the structure are of data type double.
Data Types: struct

Version History
Introduced in R2022b

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also
satelliteCNRConfig

2-129

2 Functions

2-130

satellite

Add satellites to satellite scenario

Syntax

satellite(scenario, file)

satellite(scenario,RINEXdata)
satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly)

satellite(scenario,positiontable)
satellite(scenario,positiontable,velocitytable)
satellite(scenario,positiontimeseries)
satellite(scenario,positiontimeseries,velocitytimeseries)
satellite(_ ,Name,Value)

sat = satellite()

Description

satellite(scenario, file) adds Satellite objects from file to the satellite scenario specified
by scenario. The yaw (z) axes of the satellites point toward nadir and the roll (x) axes of the
satellites align with their respective inertial velocity vectors.

satellite(scenario,RINEXdata) adds Satellite objects from RINEXdata to the satellite
scenario specified by scenario.

satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly) adds a Satellite object from Keplerian elements defined in the
Geocentric Celestial Reference Frame (GCRF) to the satellite scenario.

satellite(scenario,positiontable) adds a Satellite object from position data specified in
positiontable (timetable object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontable,velocitytable) adds a Satellite object from position
data specified in positiontable (timetable object) and velocity data specified in
velocitytable (timetab'le object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries) adds a Satellite object from position data
specified in positiontimeseries to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries,velocitytimeseries) adds a Satellite object
to the scenario from position (in meters) data specified in positiontimeseries (timeseries
object) and velocity (in meters/second) data specified in velocitytimeseries (timeseries
object). This function creates a Satellite with OrbitPropagator="ephemeris".

satellite(,Name, Value) specifies options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes.

satellite

sat = satellite() returns a vector of handles to the added satellites. Specify any input
argument combination from previous syntaxes.

Note When the AutoSimulate property of the satelliteScenario is false, you can modify the
satellite only when the SimulationStatus is NotStarted. You can use the restart function
to reset SimulationStatus to NotStarted, but doing so erases the simulation data.

Examples

Visualize Satellite Trajectories

Create a satellite scenario object.

sc = satelliteScenario;

Load the satellite ephemeris timetable in the Earth Centered Earth Fixed (ECEF) coordinate frame.
load("timetableSatelliteTrajectory.mat", "positionTT", "velocityTT");

Add four satellites to the scenario.

sat = satellite(sc,positionTT,velocityTT, "CoordinateFrame","ecef");

Visualize the trajectories of the satellites.

play(sc);

4 Satellae S enamns Viewer — o

-
Sl

by X HEZD ™ = s £ dr -y oo

e n:;u i, Maxar I.I-.I‘u_ul-nqv‘ B A
¥ y T PO 15500

anl» | W |

2-131

2 Functions

2-132

Add Ground Stations to Scenario and Visualize Access Intervals

Create a satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020,5,1,11,36,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);
lat 10;

lon -30;

gs = groundStation(sc,lat,lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 10;

rightAscension0OfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscension0OfAscendingNode,argumentOfPeriapsis, trueAnomaly) ;

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat,gs);
intvls = accessIntervals(ac)

intvls=8x8 table

Source Target IntervalNumber StartTime EndTir
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

satellite

& Satellde Scenamd Viewer = o =

1
11000 UTC

TN

Souroe: D, Maxcw, Carfhete Ceographes, and T G Uses Commanity
nﬁ“MMUTE: iy 1 hECHD 1808 83 LITC By 2 00 08 e 00 LT Mary 3 20chd 86 00 60 UTC
] 21 | |

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime, sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000;15000000];
eccentricity = [0.01;0.02];

inclination = [0;10];
rightAscensionOfAscendingNode = [0;15];
argumentOfPeriapsis = [0;30];
trueAnomaly = [0;20];

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscensionOfAscendingNode,argumentOfPeriapsis, trueAnomaly)

sat =
1x2 Satellite array with properties:

Name
ID

2-133

2 Functions

2-134

ConicalSensors
Gimbals
Transmitters
Receivers
Accesses
GroundTrack
Orbit
OrbitPropagator
MarkerColor
MarkerSize
ShowLabel
LabelFontColor
LabelFontSize

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,LeadTime=3600)

ans=1x2 object
1x2 GroundTrack array with properties:

LeadTime
TrailTime
LineWidth
LeadLineColor
TraillLineColor
VisibilityMode

Play the scenario and set the animation speed of the simulation to 40.

play(sc,PlaybackSpeedMultiplier=40)

satellite

&~ Satellde Scenamd Viewer = o

Cographion, snd S U U Commonity

Jun T T 1208080 UTC _ Jun 3 10 168680 UTC o 5 08 00:00 68 UTC Jun ' HECH 0600 68 UTC
Ll |

Visualize GPS Constellation

Set up the satellite scenario.
startTime = datetime(2021,8,5);
stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add satellites to the scenario from a SEM almanac file.
sat = satellite(sc,"gpsAlmanac.txt","OrbitPropagator","gps");
Visualize the GPS constellation.

v = satelliteScenarioViewer(sc);

2-135

2 Functions

2-136

- Satellde Scenarnd Viewer = o

-

S0
Aur 5 HEH e [, Maxw, | arfhete Caograghury, snd e G s Gommunty

A Q0N LT
| Al e | Bl dd UITC Aug 5 3 TE.MMUTE: Asg 5 M1 ‘IJMMHTL‘: Aug 5 2 IIHMMLI'I'l: g & O {
1

Input Arguments

scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

file — TLE or SEM almanac file
character vector | string scalar

TLE or SEM almanac file, specified as a character vector or a string scalar. The file must exist in the
current folder, in a folder on the MATLAB path, or it must include a full or relative path to a file.

For more information on TLE files, see “Two Line Element (TLE) Files”.

Data Types: char | string

RINEXdata — RINEX navigation message
structure

RINEX navigation message output from rinexread, specified as a structure. The navigation message
must belong to GPS or Galileo constellation.

If RINEXdata contains multiple entries for the same satellite and StartTime of scenario is using
default values, the entry corresponding to the earliest time is used. If StartTime is explicitly
specified, the entry that is closest to StartTime is used.

satellite

Data Types: struct

Note This argument requires Navigation Toolbox™.

semimajoraxis, eccentricity, inclination, RAAN, argofperiapsis, trueanomaly —
Keplerian elements defined in GCRF
comma-separated list of vectors

Keplerian elements defined in the GCRE, specified as a comma-separated list of vectors. The
Keplerian elements are:

* semimajoraxis - This vector defines the semimajor axis of the orbit of the satellite. Each value is
equal to half of the longest diameter of the orbit.

* eccentricity - This vector defines the shape of the orbit of the satellite.

* inclination - This vector defines the angle between the orbital plane and the xy-plane of the
GCREF for each satellite in the range [0,180].

* RAAN (right ascension of ascending node) - This element defines the angle between the xy-plane of
the GCRF and the direction of the ascending node, as seen from the Earth's center of mass for
each satellite in the range [0,360). The ascending node is the location where the orbit crosses the
xy-plane of the GCRF and goes above the plane.

* argofperiapsis (argument of periapsis) - This vector defines the angle between the direction of
the ascending node and the periapsis, as seen from the Earth's center of mass in the range
[0,360). Periapsis is the location on the orbit that is closest to the Earth's center of mass for each
satellite.

* trueanomaly - This vector defines the angle between the direction of the periapsis and the
current location of the satellite, as seen from the Earth's center of mass for each satellite in the
range [0,360).

Note All angles defined outside the specified range is automatically converted to the corresponding
value within the acceptable range.

For more information on Keplerian elements, see “Orbital Elements”.

positiontable — Position data
timetable | table

Position data in meters, specified as a timetable created using the timetable function or table
function. The positiontable has exactly one monotonically increasing column of rowTimes
(datetime or duration) and either:

* One or more columns of variables, where each column contains data for an individual satellite
over time.

* One column of 2-D data, where the length of one dimension must equal 3 and the remaining
dimension defines the number of satellites in the ephemeris.

* One column of 3-D data, where the length of one dimension must equal 3, one dimension is a
singleton, and the remaining dimension defines the number of satellites in the ephemeris.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames property are used by default if no names are

2-137

2 Functions

2-138

provided as an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame
name-value argument is provided. States are held constant in GCRF for scenario timesteps outside of
the time range of positiontable.

Data Types: table | timetable

velocitytable — Velocity data
timetable | table

Velocity data in meters/second, specified as a timetable created using the timetable function or the
table function. The velocitytable has exactly one monotonically increasing column of rowTimes
(datetime or duration), and either:

* One or more columns of variables, where each column contains data for an individual satellite
over time.

* One column of 2-D data, where the length of one dimension must equal 3 and the remaining
dimension defines the number of satellites in the ephemeris.

* One column of 3-D data, where the length of one dimension must equal 3, one dimension is a
singleton, and the remaining dimension defines the number of satellites in the ephemeris.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames are used by default if no names are provided as
an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame name-value
argument is provided. States are held constant in GCRF for scenario timesteps outside of the time
range of velocitytable.

Data Types: table | timetable

positiontimeseries — Position data
timeseries object | tscollection ohject

Position data in meters, specified as a timeseries object or a tscollection object.

» If the Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

» Ifthe Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of positiontimeseries.

Data Types: timeseries | tscollection

velocitytimeseries — Velocity data
timeseries object | tscollection ohject

Velocity data in meters/second, specified as a timeseries object or a tscollection object.

satellite

» If the Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

» Ifthe Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of velocitytimeseries.

Data Types: timeseries | tscollection
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: Name = 'MySatellite' sets the satellite name to 'MySatellite'.

CoordinateFrame — Satellite state coordinate frame
"inertial" (default) | "ecef" | "geographic"

Satellite state coordinate frame, specified as the comma-separated pair consisting of
‘CoordinateFrame' and one of these values:

+ "inertial" — For timeseries or timetable data, specifying this value accepts the position
and velocity in the GCRF frame.

+ "ecef" — For timeseries or timetable data, specifying this value accepts the position and
velocity in the ECEF frame.

* "geographic" — For timeseries or timetable data, specifying this value accepts the position
[lat, lon, altitude], where lat and lon are latitude and longitude in degrees, and altitude is the
height above the World Geodetic System 84 (WGS 84) ellipsoid in meters.

Velocity is in the local NED frame.
Dependencies

To enable this name value argument, ephemeris data inputs (timetable or timeseries).

Data Types: string | char

GPSweekepoch — GPS week epoch
date string

GPS week epoch, specified as a date string in "dd-Mmm-yyyy" or 'dd-Mmm-yyyy' format. The GPS
week number specifies the reference date that the function uses when counting weeks defined in the
SEM almanac file. If you do not specify GPSweekepoch, the function uses the date that coincides with
the latest GPS week number rollover date before the start time.

This argument applies only if you use a SEM almanac file. If you specify GPSweekepoch and you are
not using a SEM almanac file, the function ignores the argument value.

2-139

2 Functions

2-140

Data Types: string | char

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

Name — Satellite name
string scalar | string vector | character vector | cell array of character vectors

You can set this property only when calling the satellite function. After you call satellite
function, this property is read-only.

Satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

* If only one satellite is added, specify Name as a string scalar or a character vector.

» If multiple satellites are added, specify Name as a string scalar, character vector, string vector or a
cell array of character vectors. All satellites added as a string scalar or a character vector are
assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of satellites being added. Each satellite is assigned the
corresponding name from the vector or cell array.

The default value when satellite is added to the satellite scenario using
* Keplerian orbital elements, TLE file, timeseries, or timetable — "Satellite ID", where ID is

assigned by the satellite scenario.

* SEM almanac file or RINEX GPS navigation data — "PRN:prnValue", where prnValue is an integer
denoting the pseudorandom noise code of the satellite as specified in the SEM almanac file.

* RINEX Galileo navigation data — "GAL Sat IF: id", where "id" is the satellite ID of the Galileo
satellite defined in the RINEX navigation data.

Data Types: string

OrbitPropagator — Name of orbit propagator
"sgp4" | "sdp4" | "two-body-keplerian" | "ephemeris" | "gps" | "galileo"

You can set this property on satellite object creation and then this property becomes read-only.

Name of the orbit propagator used for propagating the satellite position and velocity, specified as
"sgp4", "sdp4", "two-body-keplerian”, "ephemeris"”,"gps", or "galileo". The value
depends on how you specify the satellite.

» Timetable, table, timeseries, or tscollection — OrbitPropagatoris "ephemeris".

* SEM almanac file or RINEX data containing GPS navigation message — OrbitPropagator can
be any value except "ephemeris" and "galileo". The initialization is performed using the
"gps" orbit propagator.

+ RINEX data containing Galileo navigation message — OrbitPropagatoris "galileo" and can
be any value except "ephemeris" and "gps" The initialization is performed using the
"galileo" orbit propagator..

satellite

» TLE file — OrbitPropagator can be "two-body-keplerian", "sgp4", or "sdp4". If the
orbital period is less than 225 minutes, the initialization is performed using "sgp4". Otherwise,
the initialization is performed using "sdp4".

* Keplerian elements — OrbitPropagator can be "two-body-keplerian", "sgp4", or
"sdp4".

If the satellite is initialized using a timetable, table, timeseries object, or tscollection object,
the default propagator is "ephemeris". If the initialization is performed using a SEM almanac file,
the default propagator is "gps". If the initialization is performed using RINEX data, the default
propagator is "gps" for GPS satellites and "galileo" for Galileo satellites. Otherwise, if the orbital
period is less than 225 minutes, the default propagator is "sgp4", else "sdp4".

If RINEX data defines both valid GPS and Galileo navigation messages, OrbitPropagator cannot be
specified as "gps" or "galileo" name value argument. However, it can still be specified as "two-
body-keplerian", "sgp4", or "sdp4". The default propagator is "gps" for GPS satellites and
"galileo" for Galileo satellites.

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite automatically selects "ephemeris" orbit propagator.

Output Arguments

sat — Satellite in the scenario
Satellite object

Satellite in the scenario, returned as a Satellite object belonging to the satellite scenario specified
by scenario.

You can modify the Satellite object by changing its property values.

Version History
Introduced in R2021a

RINEXdata argument added to the function
You can now add satellites via RINEX navigation data to the scenario using the RINEXdata input
argument.

SEM almanac file added to the file argument

You can now add satellites via SEM almanac file to the scenario using the file input argument.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | receiver | transmitter | show | play | hide | orbitalElements

2-141

2 Functions

Topics

“Comparison of Orbit Propagators”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-142

conicalSensor

conicalSensor

Package: matlabshared.satellitescenario

Add conical sensor to satellite scenario

Syntax

conicalSensor(parent)
conicalSensor(parent,Name=Value)
sensor = conicalSensor()

Description

conicalSensor(parent) adds a ConicalSensor object to each parent in the vector parent using
default parameters. parent can be satellite, groundStation, or gimbal.

conicalSensor(parent,Name=Value) adds conical sensors to the parents in parent using
additional parameters specified by optional name-value arguments. For example,
'"MaxViewAngle'=90 specifies a field of view angle of 90 degrees.

sensor = conicalSensor() returns added conical sensors as a row vector sensor. Specify
any input argument combination from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 21-Jun-2021 08:55:00
StopTime: 26-Jun-2021 08:55:00

SampleTime: 60

AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]

Viewers: [0x0 matlabshared.satellitescenario.Viewer]
AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

2-143

2 Functions

semiMajorAxis = 7878137;

eccentricity = 0;

inclination = 50;

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 50;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [0.059 1 1]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]
LabelFontSize: 15

Add a ground station, which represents the location to be photographed, to the scenario.

gs = groundStation(sc,Name="Location to Photograph",
Latitude=42.3001,Longitude=-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location to Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0O meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [1 0.4118 0.1608]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]
LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)

2-144

o°

0° o° o° o°

conicalSensor

g:
Gimbal with properties:

Name: Gimbal 3
ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.
pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,MaxViewAngle=60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis to the conical sensor between the camera and the location to be photographed.
ac = access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]

LineWidth: 3
LineColor: [0.3922 0.8314 0.0745]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

2-145

2 Functions

2-146

s Satellde Scenamd Viewer

Bingran: Eart, Manaw. Earthotar Gadgraphes., el P G5 | Funt Cormrinty

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

Jun 23 ST Ol B UTC

accessIntervals(ac)

Joarn M 50:04 08 UTC
|

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location to Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location to Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location to Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location to Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location to Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location to Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location to Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location to Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location to Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location to Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location to Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location to Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location to Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location to Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location to Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location to Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

conicalSensor

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667
Visualize the revisit times that the camera photographs of the location.

play(sc);

-

Sl

S I 203 Songrre Eant, Masaw, Earttdar Geograpturs., sl P 65 |t Gomvranty

AXETAT LT
R LD L

duan 23 ECHT 00l B UTC = Jean M 50:04 08 UTC
|

Input Arguments

parent — Element of scenario to which conical sensor is added
scalar | vector

Element of scenario in which to add the conical sensor, specified as a scalar or vector of satellites,
ground stations, or gimbals. The number of conical sensors to add is determined by the size of the
inputs.

» If parent is a scalar, all conical sensors are added to the parent.

» If parent is a vector of parents and the number of conical sensors specified is one, that conical
sensor is added to each parent.

» If parent is a vector of parents and the number of conical sensors specified is more than one, the
number of conical sensors must equal the number of parents in parent and each parent gets one
conical sensor.

2-147

2 Functions

2-148

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'MountingAngle'=[20;35;10] sets the yaw, pitch, and roll angles of the conical sensor
to 20, 35, and 10 degrees, respectively.

Note The size of the name-value arguments defines the number of conical sensors that you can
specify. To understand how to specify multiple conical sensors, refer to these properties.

Name — Conical sensor name
"Conical sensor idx" (default) | string scalar
character vectors

string vector | character vector | cell array of

You can set this property only when calling the conicalSensor function. After you call the
conicalSensor function, this property is read-only.

Conical sensor name, specified as a name-value argument consisting of 'Name' and a string scalar,
string vector, character vector, or a cell array of character vectors.

» Ifyou are adding only one conical sensor, specify Name as a string scalar or a character vector.

» Ifyou are adding multiple conical sensors, specify Name as a string scalar, character vector, string
vector, or a cell array of character vectors. All conical sensors that you add as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vectors must equal the number of conical sensors that you are
adding. Each conical sensor is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by the satellite scenario.

Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; O] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

+ Ifyou are adding one conical sensor, MountingLocation is a three-element vector. The elements
specify the x, y, and z components of the Cartesian coordinates in the body frame of conical
Sensor.

» If you are adding multiple conical sensors, MountinglLocation can be a three-element vector or
a matrix. When specified as a vector, the same set of mounting locations are assigned to all
specified conical sensors. When specified as a matrix, MountinglLocation must contain three
rows and the same number of columns as the conical sensors. The columns correspond to the
mounting location of each specified conical sensor and the rows correspond to the mounting
location coordinates in the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountinglLocation property only when SimulationStatus is NotStarted. You can use the

conicalSensor

restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll, in that
order. Yaw, pitch, and roll are positive rotations about the z-axis, intermediate y-axis, and
intermediate x-axis of the parent.

» Ifyou are adding one conical sensor, MountingAngles is a three-element vector.

* If you are adding multiple conical sensors, MountingAngles can be a three-element vector or a
matrix. When specified as a vector, the same set of mounting angles are assigned to all specified
conical sensors. When specified as a matrix, MountingAngles must contain three rows and the
same number of columns as the conical sensors. The columns correspond to the mounting angles
of each specified conical sensor and the rows correspond to the yaw, pitch, and roll angles in the
parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Example: [0; 30; 60]
Data Types: double

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180] | vector

Field of view angle in degrees, specified as a scalar in the range [0, 180] or a vector.

* Ifyou add one conical sensor, MaxViewAngle must be a scalar.

» If you add multiple conical sensors, MaxViewAngle can be a scalar or a vector. When
MaxViewAngle is a scalar, the same field of view angle is assigned to all conical sensors that you
are adding. When MaxViewAngle is a vector, the length of MaxViewAngle must equal the
number of conical sensors in the parent. Each element of MaxViewAngle is assigned to the
specified corresponding conical sensor.

When the AutoSimulate property of the satellite scenario is false, you can modify MaxViewAngle
while the SimulationStatus is NotStarted or InProgress.

Data Types: double
Output Arguments

sensor — Conical sensor
row vector object

Conical sensors attached to parent, returned as a row vector.

2-149

2 Functions

When the AutoSimulate property of the satellite scenario is false, you can call conicalSensor
function only when SimulationStatus is NotStarted. You can use the restart function to reset
SimulationStatus to NotStarted, but doing so erases the simulation data.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access | gimbal | satellite

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-150

play

play
Package: matlabshared.satellitescenario

Play satellite scenario simulation results on viewer

Syntax

play(scenario)
play(viewer)
play(scenario,Name=Value)

Description

play(scenario) plays simulation results of the satellite scenario, scenario, on the Satellite
Scenario Viewer. When the AutoSimulate property of the satellite scenario is true, the simulation
is automatically performed from StartTime to StopTime using a step size specified by
SampleTime, and the results are played on the viewer. Otherwise, the results calculated for
SimulationTime are played on the viewer. Calling the play function enables the widgets on the
viewer.

play(viewer) plays the satellite scenario simulation results on the Satellite Scenario Viewer
specified by viewer.

play(scenario,Name=Value) specifies additional options using one or more name-value
arguments.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000;15000000];
eccentricity = [0.01;0.02];

inclination = [0;10];
rightAscensionOfAscendingNode = [0;15];
argumentOfPeriapsis = [0;30];
trueAnomaly = [0;20];

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscensionOfAscendingNode,argumentOfPeriapsis, trueAnomaly)

2-151

2 Functions

2-152

sat =
1x2 Satellite array with properties:

Name

ID
ConicalSensors
Gimbals
Transmitters
Receivers
Accesses
GroundTrack
Orbit
OrbitPropagator
MarkerColor
MarkerSize
ShowLabel
LabelFontColor
LabelFontSize

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,LeadTime=3600)

ans=1x2 object
1x2 GroundTrack array with properties:

LeadTime
TrailTime
LineWidth
LeadLineColor
TraillLineColor
VisibilityMode

Play the scenario and set the animation speed of the simulation to 40.

play(sc,PlaybackSpeedMultiplier=40)

play

&~ Satellde Scenamd Viewer = o

Cographion, snd S U U Commonity

Jun T T 1208080 UTC _ Jun 3 10 168680 UTC o 5 08 00:00 68 UTC Jun ' HECH 0600 68 UTC
Ll |

Input Arguments

scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

viewer — Viewer playing simulation results
scalar satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Viewer playing the simulation results, specified as a scalar satelliteScenarioViewer object or an
array of satelliteScenarioViewer objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: PlaybackSpeedMultiplier=30 plays the animation 30 times faster than real time.

Viewer — Satellite Scenario Viewer
all viewers associated with satelliteScenarioViewer (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object or an array of
satelliteScenarioViewer objects.

2-153

2 Functions

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of animation in the viewer relative to real time, specified as a positive scalar.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
hide | show | satellite | access | groundStation | restart

Topics

“Satellite Constellation Access to Ground Station”
“Comparison of Orbit Propagators”

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

2-154

pointAt

pointAt

Package: matlabshared.satellitescenario

Point satellite at target

Syntax

pointAt(sat, coordinates)

pointAt(sat, target)

pointAt(sat, 'nadir')
pointAt(sat,attitudetable)
pointAt(sat,attitudetable,Name=Value)
pointAt(sat,attitudetimeseries)
pointAt(sat,attitudetimeseries,Name=Value)

pointAt(gimbal, 'none')
pointAt(gimbal, coordinates)
pointAt(gimbal, target)
pointAt(gimbal, 'nadir"')
pointAt(gimbal, steeringtable)
pointAt(gimbal, steeringtimeseries)

Description
Satellite Object

pointAt(sat,coordinates) steers the satellites in the vector sat toward the geographical
coordinates [latitude; longitude; altitude] specified by coordinates.

pointAt(sat, target) steers the satellites specified by sat toward the specified target. The
input target can be another satellite or ground station.

pointAt(sat, 'nadir') steers the satellites specified by the row vector sat toward the nadir
direction. 'nadir"' is the default pointing direction.

pointAt(sat,attitudetable) sets the attitude of the satellite sat such that it follows the
attitudes provided in attitudetable, which is a MATLAB timetable object.

pointAt(sat,attitudetable,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous attitudetable syntax. For example,
to interpret the provided attitude values as the rotation from the Geocentric Celestial Reference
Frame (GCRF) to the body frame, set CoordinateFrame to inertial.

pointAt(sat,attitudetimeseries) sets the attitudes of the satellite sat such that it follows the
attitude provided in attitudetimeseries, which is a MATLAB timeseries object.

pointAt(sat,attitudetimeseries,Name=Value) specifies options using one or more name-
value arguments in addition to the input arguments in the previous attitudetimeseries syntax.
For example, to interpret the provided attitude values as the rotation from the GCRF to the body
frame, set CoordinateFrame to inertial.

2-155

2 Functions

2-156

Gimbal Object

pointAt(gimbal, 'none') sets the gimbal angles (gimbal azimuth and gimbal elevation) of the
gimbals in the vector gimbal to zero. This setting is the default.

pointAt(gimbal, coordinates) steers the gimbals in the vector gimbal toward the geographical
coordinates [latitude; longitude; altitude] specified by coordinates.

pointAt(gimbal, target) steers the gimbals in the vector gimbal toward the specified target.

pointAt(gimbal, 'nadir') steers the gimbals specified by the row vector gimbal toward the
nadir direction of their parents, namely, their parent's latitude, longitude, and 0 meter altitude.

pointAt(gimbal, steeringtable) sets the orientation of the gimbals to align with the azimuth
and elevation angles provided in steeringtable, which is a MATLAB timetable object.

pointAt(gimbal,steeringtimeseries) sets the orientation of the gimbals to align with the
azimuth and elevation angles provided in steeringtimeseries, which is MATLAB timeseries
object.

Examples

Steer Ground Station Gimbal to Point at Satellite

Create a satellite scenario object.

startTime = datetime(2021,6,10);
stopTime = datetime(2021,6,11);

10 June 2021, 12:00 AM UTC
11 June 2021, 12:00 AM UTC

o® o o°

sampleTime = 60; seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 10; % degrees
rightAscension0OfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Add a ground station to the scenario.

latitude = 42.3501; %
longitude = -71.3504; %
gs = groundStation(sc,latitude,longitude);

egrees
egrees

d
d
Add a gimbal to the ground station.

g = gimbal(gs,MountingLocation=[0; 0; -1],MountingAngles=[0; 180; 0]);
Add a conical sensor to the gimbal.

¢ = conicalSensor(g,MountinglLocation=[0; 0; 0.5]);

pointAt

Point the gimbal at the satellite.
pointAt(g,sat);
Visualize the scenario by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

&~ Satellte Ssenarms Vieaer -_

Ground station 2

-

s 10 2021 feoiarme [nn, Maxse srthater O i, s Fha G P e
A 80 UTE . beraphes, wi® - .

4 11 »

Play the scenario.
play(sc);
Set the ground station as the camera target.

camtarget(v,gs);

lﬁmﬂdlﬂl': Sun 18 J001 06 S8 040 LIT Jun 18 2031 120000 UTC Jun 10 X1 18:00:08 UTC
I [|

S 11 P

2-157

2 Functions

& Satellte Scenams Viewer _ o

Souroe: D, Maxw, arffede Ceographos, and T CGE Uses Community
lﬁbﬁﬂll"l’l’: dun 1B 0 D6 3 00 LITC a8 202 136000 UTC Jun 10 2k 1808068 UTC Jowm 11 20 |
A | | |

Visualize the field of view of the conical sensor and observe the change in orientation of the conical
Sensor.

fieldOfView(c);

2-158

pointAt

& Satellze Scenams Viewer _ o

-
Sl
o 13 I
R UTE

4 11 »

Siouroe: D, Maxcw, Carffets Geographes, and S GE Uses Commanity
hﬂpd o8 UTC Jun 18 FCH OE &3 00 LITC Jun 18 M0 13 06 00 LTS Jun 10 P 1500068 UTC oo 11 ECH
A | |

Input Arguments

sat — Satellite
scalar | vector

Satellite object, specified as either a scalar or a vector.

gimbal — Gimbal
scalar | vector

Gimbal object, specified as either a scalar or a vector.

coordinates — Geographical coordinates of satellite or gimbal target
three-element vector | 2-D array

Geographical coordinates of the satellite or gimbal target, specified as a three-element vector or a 2-
D array.

* When the coordinates are a three-element vector, the elements of the vector correspond to the
latitude, longitude, and altitude, in that order, and all satellites or gimbals are steered to point at
this location.

* When the coordinates are a 2-D array, the number of rows must equal 3 and the number of
columns must equal the number of satellites in satellite or the number of gimbals in gimbal.
The rows correspond to the latitude, longitude, and altitude, in that order, and each column
represents the pointing coordinates of the corresponding satellite in the vector satellite or

2-159

2 Functions

2-160

gimbal in the vector gimbal. The latitudes and longitudes are specified in degrees and the
altitudes are specified in meters, which represent the height above the surface of the Earth.

target — Target
scalar | vector

Target at which input satellite or gimbal is pointed, specified as a scalar or a vector. The input
target can be another satellite or a ground station.

* When target is a scalar, all satellites or gimbals point to the specified target.

* When target is a vector, the length of target must equal the number of satellites in sat or the
number of gimbals in gimbal. Each element in target represents the pointing target of a
satellite in sat or a gimbal in gimbal.

attitudetable — MATLAB timetable for satellite attitude
timetable object

MATLAB timetable with exactly one monotonically increasing column of rowTimes (datetime or
duration).

+ If sat contains a single satellite, the table must contain one data column of scalar-first
quaternions [1-by-4] or ZYX Euler angles [1-by-3].

+ If sat is an array of satellites, each data row must contain either:

* Multiple columns, where each column contains data for an individual satellite over time.

* One column of 2-D data, where the length of one dimension must equal 3 or 4, depending on
whether Euler angles or quaternions are used, and the remaining dimension must have length
equal to the number of satellites in sat.

* One column of 3-D data, where the length of one dimension must equal 3 or 4, depending on
whether Euler angles or quaternions are used, one dimension is a singleton, and the remaining
dimension must have length equal to the number of satellites in sat.

Euler angles represent passive, intrinsic rotations in degrees, using the ZYX rotation order. If the
provided rowTimes are of type duration, time values are measured relative to the current scenario
StartTime property.

The function assumes that satellite attitudes represent the transformation from the GCRF to the body
frame, unless you specify a CoordinateF rame name-value argument. For scenario timesteps outside
of the time range of attitudetable, the function uses nadir by default, unless you specify an
ExtrapolationMethod name-value argument.

attitudetimeseries — MATLAB timeseries for satellite attitude
timeseries object

MATLAB timeseries containing scalar-first quaternions or ZYX Euler angles.

+ Ifthe Data property of timeseries has two dimensions, the length of one dimension must equal
3 or 4, depending on whether Euler angles or quaternions are used, and the other dimension must
align with the orientation of the time vector.

+ If sat is an array of satellites, the Data property of timeseries must have three dimensions
where the length of one dimension must equal 3 or 4, depending on whether Euler angles or
quaternions are used, either the first or the last dimension must align with the orientation of the
time vector, and the remaining dimension must align with the number of satellites in sat.

pointAt

Euler angles represent passive, intrinsic rotations in degrees, using the ZYX rotation order. When
timeseries.TimeInfo.StartDate is empty, time values are measured relative to the current
scenario StartTime property.

The function assumes that satellite attitudes represent the transformation from the Geocentric
Celestial Reference Frame (GCRF) to the body frame, unless you specify a CoordinateF rame name-
value argument. For scenario timesteps outside of the time range of attitudetable, the function
uses nadir by default, unless you specify an ExtrapolationMethod name-value argument.

steeringtable — MATLAB timetable for satellite steering
timetable object

MATLAB timetable with exactly one monotonically increasing column of rowTimes (datetime or
duration).

+ If gimbal contains a single gimbal, the table must contain one data column of azimuth and
elevation angles in degrees [1-by-2].
+ Ifgimbal is an array of gimbals, each data row must contain either:

* Multiple columns, where each column contains data for an individual gimbal over time.

* One column of 2-D data, where the length of one dimension must equal 2 and the remaining
dimension must have length equal to the number of gimbals in gimbal.

* One column of 3-D data, where the length of one dimension must equal 2, one dimension is a
singleton, and the remaining dimension must have length equal to the number of gimbals in
gimbal.

Specify the azimuth and elevation angles in degrees. If the provided rowTimes are of type
duration, time values are measured relative to the current scenario StartTime property.

steeringtimeseries — MATLAB timeseriesfor satellite steering
timeseries object

MATLAB timeseries timeseries containing azimuth and elevation in degrees [1-by-2].

+ Ifthe Data property of timeseries has two dimensions, the length of one dimension must equal
2 and the other dimension must align with the orientation of the time vector.

+ Ifgimbal is an array of gimbals, the Data property of timeseries must have three dimensions
where:
* The length of one dimension must equal 2.
* Either the first or the last dimension must align with the orientation of the time vector.
* The remaining dimension must align with the number of gimbals in gimbal.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property.

Name-Value argument Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

2-161

2 Functions

Example: pointAt(sat,attTT,CoordinateFrame="inertial") interprets the provided attitude
values as the rotation from the Geocentric Celestial Reference Frame (GCRF) to the body frame.

CoordinateFrame — Coordinate frame of custom attitude inputs
inertial (default) | ecef | ned

Coordinate frame of custom attitude inputs, specified as one of these options.
* 1inertial — Interprets the provided attitude values as the rotation from the GCRF to the body
frame.

* ecef — Interprets the provided attitude values as the rotation from the Earth-Centered-Earth-
Fixed (ECEF) frame to the body frame.

* ned — Interprets the provided attitude values as the rotation from the North-East-Down (NED)
frame to the body frame.

Data Types: char | string

ExtrapolationMethod — Default behavior for attitude
nadir (default) | fixed

Default behavior for attitude, specified as:

* nadir — Sets the attitude of the satellite sat such that the yaw axis points in the nadir direction.

+ fixed — Keeps the attitude constant with respect to the GCRF at the closest time value for which
data is provided in the custom attitude data.

The scenario uses this setting for scenario time steps that lie outside the provided custom attitude
time range. If you do not provide ExtrapolationMethod, the function returns a warning when the
scenario time is out of range of the custom attitude time range.

Data Types: char | string

Format — Format of attitude data provided
quaternion (default) | euler

Format of attitude data provided, specified as one of these options.
* quaternion — Interprets the provided attitude values as scalar-first quaternions. Quaternions
represent passive rotations from CoordinateFrame to the body frame.

* euler — Interprets the provided attitude values as Euler angles, in degrees. Euler angles
represent passive, intrinsic rotations from CoordinateFrame to the body frame using the ZYX
rotation order and are provided in that order.

Data Types: char | string

Note When the AutoSimulate property of the satellite scenario is false, you can call the
pointAt function as long as the SimulationStatus is NotStarted or InProgress.

Version History
Introduced in R2021a

2-162

pointAt

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | conicalSensor | transmitter | receiver

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-163

2 Functions

camroll

Package: matlabshared.satellitescenario

Set or get roll angle of camera for Satellite Scenario Viewer

Syntax

camroll(viewer, roll)
outRoll = camroll(viewer,)

Description

camroll(viewer, roll) sets the roll angle of the camera for the Satellite Scenario Viewer. Setting
the roll angle rotates the camera around its x-axis.

outRoll = camroll(viewer,) returns the roll angle of the camera. If the second input is
roll, then the function sets the output equal to the input roll.

Examples

Set Camera Roll Angle of Satellite Scenario Viewer
Create a satellite scenario object.

sc = satelliteScenario;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

2-164

camroll

& Setellne Senand Viewer = o

-

S
ﬂ‘f;ﬁﬁ S [, Maxw, Geol pe, Larthuier Geograp Sikirben [F5, LISOA, LISOES, AercOR00, KM, and S CHS User Commenity
‘. I » ﬂ x 2 T 500 Amg F3 D01 184740 758 Aug Y PO 18 4T 30 804 AT S
\) | | |

Set the roll angle of the camera in the Satellite Scenario Viewer to 60 degrees.

roll = 60; % degrees
camroll(v,roll);

2-165

2 Functions

2-166

. - |
& Setellne Scenamd Viewer _ o |

Showwre [, Mooow, Dol we, [arihvder Deeographecs, u OFG, LIS, PSS, Aaeo0RRID), BO0RM, s s TR Ui Community
Aug F3 M2 185503 X8 Amg 13 5.3 S04 Aug I8 0 1B S50 TR Aug X3 32 15505 60
| | |

Input Arguments

viewer — Satellite Scenario Viewer
satelliteScenarioViewer object

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object.!

roll — Roll angle of camera
numeric scalar in the range [-360, 360]

Roll angle of the camera in degrees, specified as a scalar in the range [-360, 360].

Output Arguments

outRoll — Camera roll angle
numeric scalar in the range [-360, 360]

Camera roll angle in degrees, returned as a numeric scalar.

Tips

* When the pitch angle is near -90 (the default value) or 90 degrees, the camera loses one
rotational degree of freedom. As a result, when you change the roll angle, the heading angle might

1 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks®.

camroll

change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camrol1l function.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | campitch | campos | hideAll | camtarget | camheight | camheading

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-167

2 Functions

campitch
Package: matlabshared.satellitescenario

Set or get pitch angle of camera for Satellite Scenario Viewer

Syntax

campitch(viewer,pitch)
outPitch = campitch(viewer,)

Description

campitch(viewer, pitch) sets the pitch angle of the camera for the specified Satellite Scenario
Viewer. Setting the pitch angle tilts the camera up or down about its y-axis.

outPitch = campitch(viewer,) returns the pitch angle of the camera. If the second input is
pitch, then the function sets the output equal to the input pitch.

Examples

Set Camera Pitch Angle of Satellite Scenario Viewer
Create a satellite scenario object.

sc = satelliteScenario;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

2-168

campitch

& Setellne Senand Viewer = o

-
S

ey 23 22Y

1BAT20 UTE

Souroe: L, Maxcw, Geol e, | atheter Geograp Tarten O, LISOA, LSO, AseolED, W0, and T CHY Usew Communty
x 2 T 500 Amg F3 D01 184740 758 Aug Y PO 18 4T 30 804 AT S
D L L f | l |

In the Satellite Scenario Viewer, set the pitch angle of the camera to —60 degrees.

pitch = -60; % degrees
campitch(v,pitch);

2-169

2 Functions

& Satellde Scenarmd Viewer = [}

-
Aagy T3 M Sourme: L, ol 'ye. [arthutar ’ GG [, LISOA, LSS, Aenclenn, m.-m s G5 U ooty

84T 0 LTS
|\ A e

| il Mﬂmllﬂ-ﬂﬂjm .iq""!-."ﬂﬂluﬂ':im .i.q""!!tﬂllﬂlj'uim Aa.g.'ll.'t:"ﬂ:'LIMJ.i'Sﬂ:E

Input Arguments

viewer — Satellite Scenario Viewer
satelliteScenarioViewer object

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object.?

pitch — Pitch angle of camera
-90 (default) | scalar the in the range [-90, 90]

Pitch angle of the camera in degrees, specified as a scalar in the range [-90, 90]. By default, the pitch
angle is -90 degrees, which means that camera points directly toward the surface of the globe.

Output Arguments

outPitch — Camera pitch angle
numeric scalar in the range [-90, 90]

Camera pitch angle in degrees, returned as a numeric scalar.

2 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2-170

campitch

Tips

* When the pitch angle is near -90 (the default value) or 90 degrees, the camera loses one
rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheading

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-171

2 Functions

2-172

campos

Package: matlabshared.satellitescenario

Set or get position of camera for Satellite Scenario Viewer

Syntax

campos (viewer,lat, lon)

campos (viewer,lat, lon,height)

campos (viewer)

[LatOut, lonOut,heightOut] = campos()
Description

campos (viewer,lat, lon) sets the latitude and longitude of the camera for the specified Satellite
Scenario Viewer.

campos (viewer, lat, lon, height) sets the latitude, longitude, and ellipsoidal height of the
camera. If you want to set only the height of the camera, use the camheight function instead.

campos (viewer) displays the latitude, longitude, and ellipsoidal height of the camera as a three-
element vector. satelliteScenarioViewer objects use the WGS84 reference ellipsoid.

[LatOut, lonOut,heightOut] = campos() sets the position and then returns the latitude,
longitude, and height of the camera. Specify any input argument combinations from previous
syntaxes.

Examples

Reposition Camera of Satellite Scenario Viewer
Create a satellite scenario object.
sc = satelliteScenario;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

campos

& Satellte Scenamd Viewer - [m]

-

S
ey 23 224
170220 UTE

4. 11 »

Souroe D, Maxcw, Deol ye, | atheter Geographeos, RISt OFF
Lﬂ B e Amg F3 31 AT03H 8 Aug 25] L L Aug X3 M
P A | | |

In the Satellite Scenario Viewer, set the latitude and longitude of the camera to —30 degrees and the
height of the camera to 30,000 km.

latitude = -30; % degrees
longitude = -30; % degrees
height = 30000000; % meters

campos (v, latitude,longitude, height)

2-173

2 Functions

2-174

& Satellae Scenarmd Viewer = o

-

S0
Aag T3 221 Souroe: Eai, Maxow, Geolips, Lartheter Geographics, CHE S0t 05, LISOA, LSS, AsmCHn, 1M, and e (25 User Gommenity

AT OR300 LTS
AT 03 bbb Any 75 M AT 03 S % M AT 550 X5 TN TS ol r 1
] e | [[

Input Arguments

viewer — Satellite Scenario Viewer
satelliteScenarioViewer object

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object.?

lat — Geodetic latitude of camera
0 (default) | scalar in the range [-90, 90].

Geodetic latitude of the camera in degrees, specified as a scalar in the range [-90, 90].

lon — Geodetic longitude of camera
0 (default) | scalar in the range [-360, 360].

Geodetic longitude of the camera in degrees, specified as a scalar in the range [-360, 360].

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

Ellipsoidal height of the camera in meters, specified as a numeric scalar.

If you specify the height such that the camera is level with or below the surface of the Earth, then the
campos function sets the height to a value one meter above the surface.

3 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

campos

Output Arguments

latOut — Geodetic latitude of camera
numeric scalar

Geodetic latitude of the camera in degrees, returned as a numeric scalar.

lonOut — Geodetic longitude of camera
numeric scalar

Geodetic longitude of the camera in degrees, returned as a numeric scalar.

heightOut — Ellipsoidal height of camera
numeric scalar

Ellipsoidal height of the camera in meters, returned as a numeric scalar. For more information about
ellipsoidal height, see “Geodetic Coordinates”.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | hideAll | camtarget | camheight | camheading

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-175

2 Functions

camheading

Package: matlabshared.satellitescenario

Set or get heading angle of camera for Satellite Scenario Viewer

Syntax

camheading(viewer,heading)
outHeading = camheading(viewer,)

Description

camheading(viewer,heading) sets the heading angle of the camera for the specified Satellite
Scenario Viewer. Setting the heading angle shifts the camera left or right about its z-axis.

outHeading = camheading(viewer,) returns the heading angle of the camera. If the second
input is heading, then the function sets the output equal to the input heading.

Examples

Set Camera Heading Angle of Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Add a ground station to the scenario.

latitude = 42.3001; %

longitude = -71.3504; %
groundStation(sc,latitude+0.05,longitude);

egrees

d
degrees

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

2-176

camheading

Ground station 1

-
Sl
A 2
1460 0 LT

. 41 e

Siouroe: wn, Maxow, Carfhete Ceographecs, and T GE Uses Community
'FL DT 1M SE TS By 31 JECED 145657 600 My 31 2022 14 3857 258 May 31 M0 143857 580
/B | |

In the Satellite Scenario Viewer, set the height of the camera to 50 meters.

height = 50; % meters
campos (v, latitude,longitude, height);
pause(2);

Set the pitch angle of the camera to 0 degrees.
pitch = 0;

campitch(v,pitch);
pause(2);

ey |

2-177

2 Functions

A Satelle Scenaro Viewsr — o

Gmound station 1

/

¥

Set the heading angle of the camera to 20 degrees.

heading = 20; % degrees
camheading(v,heading);

2-178

camheading

i Satellte Scenans Viewer _ o

Gmund station 1

-

Sooroe: L, Maxw, Carifetsr Geographes, and S G5 Uses Commnty
F0 D 143658 750 By 31 JOCED 1456 57 000 My 31 2022 14 3657 258 May 31 M2 143857 580 iy
| |

Input Arguments

viewer — Satellite Scenario Viewer
satelliteScenarioViewer object

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object.

heading — Heading angle of camera
360 (default) | numeric scalar in the range [-360, 360]

Heading angle of the camera in degrees, specified as a scalar value in the range [-360, 360].

Output Arguments

outHeading — Camera heading angle
numeric scalar in the range [-360, 360]

Camera heading angle in degrees, returned as a numeric scalar.

Tips

* When the pitch angle is near -90 (the default value) or 90 degrees, the camera loses one
rotational degree of freedom. As a result, when you change the roll angle, the heading angle might

4 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2-179

2 Functions

change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camrol1l function.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions

show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheight |
camheading

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-180

camheight

camheight

Package: matlabshared.satellitescenario

Set or get height of camera for Satellite Scenario Viewer

Syntax

camheight(viewer,height)
heightOut = camheight(viewer,)

Description

camheight(viewer,height) sets the ellipsoidal height of the camera for the specified Satellite
Scenario Viewer.

heightOut = camheight(viewer,) returns the ellipsoidal height of the camera. If the
second input is height, then the function sets the output equal to the input height.

Examples

Retrieve Camera Height of Satellite Scenario Viewer
Create a satellite scenario object.

sc = satelliteScenario;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

2-181

2 Functions

2-182

| - Satellde SCenamd Viewer = o

-

|-
A 23 2021 Sourre: i, Max, Geol'ps, [arthwtsr Geographics, G St 05, LISOA, LS00, AemCEnD, W, snd e (35

AT AR LTS =
Al . & Aug Y3 :'l'.l.'-'1|1i' (LR FE] Aug IY T 170613 250 Aug 3 HCH 112500 Amg

Retrieve the height of the camera in the Satellite Scenario Viewer.
height = camheight(v)

height = 15000000

Input Arguments

viewer — Satellite Scenario Viewer
satelliteScenarioViewer object

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object.?

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

Ellipsoidal height of the camera in meters, specified as a numeric scalar.
satelliteScenarioViewer objects use the WGS84 reference ellipsoid. For more information about
ellipsoidal height, see “Geodetic Coordinates”.

If you specify the height so that the camera is level with or below the surface of the Earth, then the
camheight function sets the height to a value one meter above the surface.

5 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

camheight

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheading

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-183

2 Functions

camtarget

Package: matlabshared.satellitescenario

Set camera target for Satellite Scenario Viewer

Syntax

camtarget(viewer, target)

Description

camtarget(viewer,target) focuses the camera on the input satellite or ground station. The
camera follows target. You can reset the camera target by using camtarget with a different
satellite or ground station or by double-clicking anywhere in the map.

Examples

Set Camera Target to Satellite

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 0; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscension0fAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

2-184

camtarget

- Satellde Scenarmd Viewer = o

oo [, Maxow, Larfhete Ceographes, and T

| "?ﬂ'."'."‘IEbllﬂd-llTiE Y 2 ..I o S0 022 T S0 UTC

Play the scenario in the viewer.
play(sc, "Viewer",v);

Set the camera target to the satellite.

camtarget(v,sat);

2-185

2 Functions

& Setellne SCenand Viewer = o

Satelite 1 5

Soroe: Lan, Maxw, Larffets Geographeos, and

E g LT y . Wy 51 SO2F 78000 UTE
L |

Input Arguments

viewer — Satellite Scenario Viewer
satelliteScenarioViewer object

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object.b

target — Camera target
Satellite object | GroundStation object

Camera target, specified as a scalar Satellite or GroundStation object.

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camheight | camheading

6 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2-186

camtarget

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-187

2 Functions

hideAll

Package: matlabshared.satellitescenario

Hide all graphics in satellite scenario viewer

Syntax

hideAll(viewer)

Description

hideAll(viewer) hides all graphics in the specified satellite scenario viewer.

Examples

Hide All Graphics from Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Add satellites to the scenario.

tleFile = "leoSatelliteConstellation.tle";
sats = satellite(sc,tleFile);

Add a hundred ground stations to the scenario.
latitudes = linspace(-90,90,100); %

longitudes = linspace(-180,180,100); %
gss = groundStation(sc,latitudes, longitudes);

egrees
egrees

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

2-188

hideAll

& Setellte Senand Viewer = o

Souoe L, Maow, [arfhets Geographaeos, snd Fagw Cormmunity
r’."i 008 UTC By 4 2020 10 S 00 UTE By 4 2020 19 30 00 UTC Mllary 4 JEChS 06008 UTC
| |

Hide all graphics in the viewer.

hideAll(v);

2-189

2 Functions

Community

Blary 4 20 15 30000 UTC By 4 0CHS 0068 UTC
1

Input Arguments

viewer — Satellite Scenario Viewer
satelliteScenarioViewer object

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object.”

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | campos | camroll | campitch | camheading | camheight | camtarget |
access | groundStation | conicalSensor | showAll

Topics
“Comparison of Orbit Propagators”

7 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2-190

hideAll

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-191

2 Functions

showAll

Package: matlabshared.satellitescenario

Show all graphics in viewer

Syntax

showAll(viewer)

Description

showAll(viewer) shows all graphics in the specified satellite scenario viewer.

Examples

Show All Hidden Satellite Scenario Objects

Create a satellite scenario object.

sc = satelliteScenario;

Specify not to automatically show scenario entities in an open Satellite Scenario Viewer.
sc.AutoShow = false;

Launch the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

2-192

showAll

&~ Satellde Scenarmd Viewer = o

-

Sl
A MR
TAFTAT LT

TN

Soroe D, Maxow, Larfhete Ceographes, and T G Uses Community
FIT 3T S5 ey 31 WD HESTAT TS Ry 31 00D 14 ST 600 Moy 31 20T 145738 350 By 30 283 14
/ | | | |

Add a constellation of satellites to the scenario.

tleFile = "leoSatelliteConstellation.tle";
sat = satellite(sc,tleFile);

Add a ground station to the scenario.

gs = groundStation(sc);

Visualize the satellite scenario objects using the Satellite Scenario Viewer.

showAll(v);

2-193

2 Functions

4 Satellae Scenams Viewer . o

By 4 0CHS 0068 UTC

Input Arguments

viewer — Satellite Scenario Viewer
satelliteScenarioViewer object

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object.?

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | access | groundStation | satelliteScenarioViewer |
conicalSensor

Functions
show | play | hide | campos | camroll | campitch | camheading | camheight | camtarget

Topics
“Comparison of Orbit Propagators”

8 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2-194

showAll

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-195

2 Functions

2-196

accessPercentage

Package: matlabshared.satellitescenario

Percentage of time when access exists between first and last node in access analysis

Syntax

acpercent = accessPercentage(ac)

Description

acpercent = accessPercentage(ac) returns the percentage of time from start time to stop time
of the satellite scenario when access exists between the first and last node of each access object in
the input vector, ac.

Examples

Calculate Access Percentage Between Ground Station and Satellites

Create a satellite scenario object.

startTime = datetime(2020,5,1,11,36,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);
Add a ground station to the scenario.

gs = groundStation(sc);

Add satellites to the scenario.

semiMajorAxis = [10000000 10000000]; % meters
eccentricity = [0 0];

inclination = [0 30]; % degrees
rightAscensionOfAscendingNode = [0 0]; % degrees
argumentOfPeriapsis = [0 0O]; % degrees
trueAnomaly = [0 10]; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscension0OfAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Add access analysis between the ground station and each satellite.

access(gs,sat(l));
access(gs,sat(2));
Obtain the access percentage between the ground station and each satellite.

ac = gs.Accesses;
acPercent = accessPercentage(ac)

accessPercentage

acPercent = 2x1

15.0000
14.9306

Input Arguments

ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of Access objects.

Outputs Arguments

acpercent — Access percentage
row vector of nonnegative numbers

Access percentage, returned as a row vector of nonnegative numbers.

Note When the AutoSimulate property of satellite scenario is true, the access percentage
corresponds to the duration between StartTime and StopTime. When the property is false, the
access percentage corresponds to the duration between StartTime and SimulationTime.

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | satellite | access |accessIntervals |accessStatus

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-197

2 Functions

2-198

linkPercentage

Package: satcom.satellitescenario

Percentage of time when link between first and last node in link analysis is closed

Syntax

1lp = linkPercentage(1lnk)

Description

1lp = linkPercentage(1lnk) returns the percentage of time from start time to stop time of the
satellite scenario when the link between the first and last node is closed.

Examples

Calculate Uplink Percentage Between Ground Station and Satellite

Create a satellite scenario object.

startTime = datetime(2020,11,13,7,25,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 10; % degrees
rightAscension0OfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscension0fAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Add a receiver to the satellite.

rx = receiver(sat);

Add a ground station to the scenario.

latitude = 0; %

longitude = 30; %
gs = groundStation(sc,latitude,longitude);

egrees

d
degrees

Add a transmitter to the ground station.
tx = transmitter(gs, "MountingAngles",[0; 180; 0]);

Create an uplink.

linkPercentage

Ink = link(tx, rx);

Calculate the link percentage of the uplink.

linkpercent linkPercentage(1lnk)

linkpercent 0

Input Arguments

lnk — Link analysis
Link object vector | Link object scalar

Link analysis object, specified as a Link object vector or scalar.

Outputs Arguments

1p — Link percentage
vector of positive numbers | scalar

Link percentage, returned as a vector of positive numbers or a scalar.

Note When the AutoSimulate property of the satellite scenario is true, the link percentage
corresponds to the duration between StartTime and StopTime. When the property is false, the
link percentage corresponds to the duration between StartTime and SimulationTime.

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | satelliteScenarioViewer | Link

Functions
show | play | ebno | LinkStatus | linkIntervals | groundStation

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-199

2 Functions

2-200

linkStatus

Package: satcom.satellitescenario

Status of link closure between first and last node

Syntax
linkstat = linkStatus(lnk)
linkstat = linkStatus(lnk,timelIn)

[linkstat,timeOut] = linkStatus()

Description

linkstat = linkStatus(lnk) returns a matrix of logicals representing the link closure status
history linkstat of each link in the vector 1ink. The rows of the matrix correspond to the link
objects in 1ink and the columns correspond to the time sample.

linkstat = linkStatus(lnk,timeIn) returns a column vector of status linkstat of each link
in the vector link at the specified datetime timeIn. Each element of linkstat corresponds to a
link in 1ink. If no time zone is specified in timeIn, the time zone is assumed to be Coordinated
Universal Time (UTC).

[linkstat,timeOut] = linkStatus() returns the link closure status and the corresponding
times in UTC.

Examples

Obtain Closed Downlink Status History

Create a satellite scenario object.

startTime = datetime(2020,10,13,5,30,0);

stopTime = datetime(2020,10,13,5,45,0);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 0; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Add a transmitter to the satellite.

tx = transmitter(sat);

linkStatus

Add a ground station to the scenario.

latitude = 0; %
longitude = 30; %
gs = groundStation(sc,latitude,longitude);

egrees
egrees

d
d
Add a receiver to the ground station.

rx = receiver(gs, "MountingAngles",[0; 180; 0]);
Create a downlink.

Ink = link(tx, rx);

Obtain the link status history of the closed downlink.

linkStatus (lnk)

S

S Ix16 logical array

© 06 6 06 6 6 6 06 06 6 6 6 6 o6 o0 o

Input Arguments

Ink — Link analysis
Link object vector | Link object scalar

Link analysis object, specified as a Link object vector or scalar.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timeln, the time zone is assumed to be UTC.

Output Arguments

linkstat — Link closure status
matrix of logical values

Link closure status, returned as a matrix of logical values representing the link closure status history
linkstat of each link in the vector 1ink. The rows of the matrix correspond to the link objects in
link and the columns correspond to the time sample. The status at a given instant is 1 (true) if the
link between the first and last node is closed. The link between the first and last node is closed when
the link between each individual pair of intermediate adjacent nodes in the Sequence property of the
link is closed.

* When both nodes of a pair belong to the same satellite or ground station, the link is considered
closed.

* Otherwise, the link between the pair is closed if the directionality is from a transmitter to a
receiver and the energy per bit to noise power spectral density ratio (Eb/No) at the receiver is
greater than its RequiredEbNo property.

2-201

2 Functions

2-202

If a given node is attached to a ground station directly or via a gimbal, the elevation angle of the
adjacent node with respect to the ground station must be greater than or equal to its
MinElevationAngle property.

timeOut — Time samples of output link status
scalar | vector

Time samples of the output link status, returned as a scalar or a vector. If the time history of the link
status is returned, timeOut is a row vector.

Note When the AutoSimulate property of the satellite scenario is true, the link status history from
StartTime to StopTime is returned. When the property is false, the link status history from
StartTime to SimulationTime is returned.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | groundStation | satelliteScenarioViewer | Link

Functions
show | play | ebno | LinkPercentage | lLinkIntervals

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

linkIntervals

linkintervals

Package: satcom.satellitescenario

Intervals during which link is closed

Syntax

interval = linkIntervals(1lnk)

Description
interval = linkIntervals(lnk) returns a table of intervals during which the link between the

first node and last node in each link object input vector is closed.

Examples

Obtain Downlink Closed Intervals Between Satellite and Ground Station

Create a satellite scenario object.

startTime = datetime(2020,10,13,7,25,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 10; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Add a transmitter to the satellite.

tx = transmitter(sat);

Add a ground station to the scenario.

latitude = 0; %

longitude = 30; %
gs = groundStation(sc,latitude,longitude);

egrees

d
degrees

Add a receiver to the ground station.
rx = receiver(gs, "MountingAngles",[0; 180; 0]);

Create a downlink.

2-203

2 Functions

2-204

Ink = link(tx, rx);
Obtain the intervals table of the closed downlink.

intervals = linkIntervals(lnk)

intervals

0x8 empty table

Input Arguments

Ink — Link analysis
Link object vector | Link object scalar

Link analysis object, specified as a Link object vector or scalar.

Output Arguments

interval — Link closed intervals
table

Intervals during which the link is closed, returned as a table.

Each row of the table denotes a specific interval, and the columns of the table are named as Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and
EndOrbit. Source and Target are the names of the first and last node, respectively, which define
the link analysis.

» If Source is directly or indirectly attached to a satellite, then StartOrbit and EndOrbit
correspond to the satellite associated with Source.

+ If Target is directly or indirectly attached to a satellite, then StartOrbit and EndOrbit
correspond to the satellite associated with Target. Otherwise, StartOrbit and EndOrbit are
NaN because they are associated with ground stations.

Note When the AutoSimulate property of satellite scenario is true, the link intervals between
StartTime and StopTime are returned. When the property is false, the link intervals between
StartTime and SimulationTime are returned.

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | groundStation | satelliteScenarioViewer | Link

Functions
show | play | linkPercentage | linkStatus | ebno

linkIntervals

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-205

2 Functions

2-206

aer

Package: matlabshared.satellitescenario

Calculate azimuth angle, elevation angle, and range of another satellite or ground station in NED
frame

Syntax

az = aer(asset,target)

[az,el] = aer(asset,target)

[az,el,range] = aer(asset,target)
[az,el,range,timeOut] = aer(asset,target)

[1 = aer(asset,target,timeln)
[1 =aer(__ ,coordinateFrame='ned")
Description

az = aer(asset,target) returns a 2-D array of the history of azimuth angles az, between asset
and target belonging to a given satelliteScenario object.

[az,el] = aer(asset,target) returns the history of elevation angles, el, between satellite or
ground station asset and another satellite or ground station target.

[az,el,range] = aer(asset,target) returns row vectors of the history of the range of
Satellite or GroundStation in target with respect to those in asset.

[az,el,range,timeOut] = aer(asset,target) returns the corresponding time in timeQut.

[] = aer(asset,target,timeln) returns the outputs at the specified datetime timeIn. az,
el, and range are structured the same way as described in syntaxes with an exception that the size
of the second dimension is fixed at 1, representing the values at the specified time timeIn.

[] = aer(,coordinateFrame='ned"') returns the az, el, range, and timeOut based

on the specified output arguments and the coordinate frame defined by the name-value argument.

Examples

Determine AER of Ground Station

Create a satellite scenario object.

startTime = datetime(2021,4,25); % April 25, 2021, 12:00 AM UTC
stopTime = datetime(2021,4,26); % April 26, 2021, 12:00 AM UTC
sampleTime = 60; % seconds

sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat = satellite(sc,tleFile);

aer

Add a ground station to the scenario using default properties.

gs = groundStation(sc);

Determine the azimuth angle, elevation angle, and range of the ground station with respect to the
satellite at April 25, 2021, 1:26 AM UTC.

time = datetime(2021,4,25,1,26,0);
[azimuth,elevation, range] = aer(sat,gs,time)

azimuth = 15.2962
elevation = -70.3858

range = 1.3442e+07

Input Arguments

asset — First scenario component
scalar | vector

First scenario component, specified as a Satellite, GroundStation, ConicalSensor, Gimbal,
Transmitter, or a Receiver object.

target — Second scenario component
scalar | vector

Second scenario component, specified as a Satellite, GroundStation, ConicalSensor, Gimbal,
Transmitter, or a Receiver object.

timeIn — Time at which output is calculated
datetime

Time at which output is calculated, specified as a datetime. If no time zone is specified in timeIn, the
time zone is assumed to be UTC.

coordinateFrame — Coordinate frame
'ned' (default) | 'body"

Coordinate frame, specified as either 'ned"' or 'body"’.

* When coordinateFrameis 'ned' — The azimuth angle is defined in the North-East-Down (NED)
frame of (and centered at) asset such that 0 degrees is North, 90 degrees is East, 180 degrees is
South, and 270 degrees is West. The elevation angle is defined in the NED frame of (and centered
at) asset such that 0 degrees implies target is on the North East (NE) plane, 90 degrees implies
target is directly above asset, and -90 degrees implies target is directly below asset.

* When coordinateFrameis 'body' — The azimuth angle is the angle between the projection of
the relative position vector of target on the x-y plane of the body frame of asset, and the x-axis
of asset. The angle is positive for positive (clockwise) rotation about the z-axis of asset. The
elevation angle is the angle between the relative position vector of target on the x-y plane of the
body frame of asset. The angle is positive when the z component of the relative position of
target defined in the body frame of asset is negative.

2-207

2 Functions

2-208

Output Arguments

az — Azimuth angles
vector | 2-D array | scalar

Azimuth angles of the target in the local azimuth, elevation, and range (AER) system in degrees,
returned as a vector, 2-D array, or scalar in the range [0,360). Azimuths are measured clockwise from
North. If the timeIn argument is not specified, the vector elements correspond to the time samples
specified by the SampleTime property from the satellite scenario StartTime to StopTime.

+ Ifboth asset and target are scalars, az is a row vector where each element represents the
azimuth angle of target with respect to asset in the NED frame of asset at a specified time
sample.

+ Ifassetisascalar and target is a vector, az is a 2-D array, where each row represents the
azimuth angle of each element in target with respect to asset in the NED frame of asset and
the columns represent the time samples.

+ Ifassetisavector and target is a scalar, az is a 2-D array, where each row represents the
azimuth angle of target with respect to each element in asset in the NED frame of the element
in asset and the columns represent the time samples.

+ Ifboth asset and target are vectors, the length of asset must equal the length of target. The
az is a 2-D array, where each row index corresponds to the index in asset and target, and
represents the azimuth angle of the element at the index in target with respect to the element at
the index in asset in the NED frame of that element in asset. The columns represent the time
samples.

If the timeIn argument is not specified and when the AutoSimulate property of the satellite
scenario is true, aer function returns the az history from StartTime to StopTime. Otherwise, it
returns the az history from StartTime to SimulationTime.

el — Elevation angles
vector | 2-D array | scalar

Elevation angles of target in the local AER system in degrees, returned as a vector, 2-D array, or
scalar in the range [-90 90]. Elevations are measured with respect to a plane that is perpendicular to
the normal of the surface of the earth. If asset is on the surface of the Earth, then the plane is
tangential to the Earth. If the timeIn argument is not specified, the vector elements correspond to
the time samples specified by the SampleTime property from the satellite scenario StartTime to
StopTime.

If the timeIn argument is not specified and when the AutoSimulate property of the satellite
scenario is true, aer function returns the el history from StartTime to StopTime. Otherwise, it
returns the el history from StartTime to SimulationTime.

range — Distances from local origin
vector | 2-D array | scalar

Distances from the local origin in meters, returned as a vector, 2-D array, or a scalar. The range
array is structured the same way as the az and el, described in the above syntaxes.

If the timeIn argument is not specified and when the AutoSimulate property of the satellite
scenario is true, aer function returns the range history from StartTime to StopTime. Otherwise,
it returns the range history from StartTime to SimulationTime.

aer

timeOut — Time samples between start and stop time of scenario
row vector | scalar

Time samples corresponding to az, el, and range in UTC, returned as a row vector, or a scalar.

If the timeIn argument is not specified and when the AutoSimulate property of the satellite
scenario is true, aer function returns the time sample history from StartTime to StopTime.
Otherwise, it returns the time sample history from StartTime to SimulationTime.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | access | groundStation | conicalSensor | transmitter | receiver | hide

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

2-209

2 Functions

2-210

accessintervals

Package: matlabshared.satellitescenario

Intervals during which access status is true

Syntax

acinterval = accessIntervals(ac)

Description

acinterval = accessIntervals(ac) returns a table of intervals during which the access status
corresponding to each access object in the input vector, ac, is true.

Examples

Add Ground Stations to Scenario and Visualize Access Intervals

Create a satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020,5,1,11,36,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);
lat 10;

lon -30;

gs = groundStation(sc,lat,lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 10;

rightAscensionOfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscension0OfAscendingNode,argumentOfPeriapsis, trueAnomaly) ;

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat,gs);
intvls = accessIntervals(ac)

intvls=8x8 table

Source Target IntervalNumber StartTime EndTi
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020

accesslIntervals

"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

4 Satellae Seenans Viewer — o

Ky 1 e 1w, M, | arheber Caographes, and S GI U Commandy

0 UTE
R R

H 12060:00 UTC Ry 1 hOCHD 800 00 LI By 2 700 00 60 00 UTC Mary 2 M0 86 00 00 UTC Moy = 3N
! 2 | |

Input Arguments

ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of Access objects.

Outputs Arguments

acinterval — Intervals during which access is true
table

Intervals during which access is true, returned as a table.

Each row of the table denotes a specific interval. The columns of the table are named Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and

2-211

2 Functions

2-212

EndOrbit. Source and Target are the names of the first and last node, respectively, which define
the access analysis.

» If Source is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Source.

» If Target is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Target. Otherwise,
StartOrbit and EndOrbit are NaN because they are associated with ground stations.

Note When the AutoSimulate property of satellite scenario is true, the access intervals between
StartTime and StopTime are returned. When the property is false, the access intervals between
StartTime and SimulationTime are returned.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | accessPercentage | accessStatus | access

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

orbitalElements

orbitalElements

Package: matlabshared.satellitescenario

Orbital elements of satellites in scenario

Syntax

elements = orbitalElements(sat)

Description

elements = orbitalElements(sat) returns the orbital elements of the specified satellite sat.

Examples

Retrieve Orbital Elements of Satellite
Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
satl = satellite(sc,tleFile);

Retrieve the orbital elements of sat1.

elementsl = orbitalElements(satl)

struct with fields:
MeanMotion: 0.0083
Eccentricity: 0.7415
Inclination: 60.0000
RightAscension0OfAscendingNode: 30.0000
ArgumentOfPeriapsis: 280
MeanAnomaly: 289.4697
Period: 43200
Epoch: 05-May-2020 13:51:55
BStar: 0

elementsl

Add a satellite from Keplerian elements to the scenario.

semiMajorAxis = 6878137;

eccentricity = 0;

inclination = 20;

rightAscensionOfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat2 = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscensionOfAscendingNode,

o°

o® o° o o°

meters

degrees
degrees
degrees
degrees

2-213

2 Functions

argumentOfPeriapsis, trueAnomaly, .
"OrbitPropagator", "two-body-keplerian",

"Name", "Sat2");

Retrieve the orbital elements of sat?2.

elements?2 orbitalElements(sat2)

elements?2 struct with fields:

SemiMajorAxis:

Eccentricity:

Inclination:
RightAscensionOfAscendingNode:
ArgumentOfPeriapsis:
TrueAnomaly:

Period:

Input Arguments

sat — Satellite
scalar

Satellite object, specified as a scalar.

Output Arguments

elements — Orbital elements
structure

6878137

0

20

0

0

0
5.6770e+03

Orbital elements of the input sat, returned as a structure. The fields of the structure depend on the
value of the OrbitPropagator property of the satelliteScenario object.

For more information on orbital elements, see “Orbital Elements”.

Two-Body Keplerian — Two-Body Keplerian orbit propagator fields

structure

The orbital elements are defined in the Geocentric Celestial Reference Frame (GCRF).

Field Description
SemiMajorAxis Semimajor axis, in meters
Eccentricity Eccentricity

Inclination Inclination angle, in degrees

RightAscensionOfAscendingNode

Right ascension of Ascending node, in degrees

ArgumentOfPeriapsis Argument of periapsis, in degrees
TrueAnomaly True anomaly at reference time, in degrees
Period Orbital period, in seconds

Data Types: struct

2-214

orbitalElements

SGP4 and SDP4 — SGP4 and SDP4 orbit propagator fields

structure

The orbital elements represent general perturbation mean elements.

Field Description

MeanMotion General perturbation mean motion, in degrees
per second

Eccentricity Mean eccentricity

Inclination Mean inclination angle, in degrees

RightAscension0fAscendingNode

Mean right ascension of Ascending node, in
degrees

ArgumentOfPeriapsis Mean argument of periapsis, in degrees

MeanAnomaly Mean mean anomaly at the reference time, in
degrees

Epoch Epoch

BStar Drag term, in per EarthRadius

Period Mean orbital period, in seconds

Data Types: struct

Ephemeris — Ephemeris orbit propagator fields

structure

Field Description
EphemerisStartTime Ephemeris start time
EphemerisStopTime Ephemeris stop time
PositionTimeTable Position timetable
VelocityTimeTable Velocity timetable

Data Types: struct

GPS — GPS orbit propagator fields
structure

The orbital elements are derived from the SEM almanac file or RINEX GPS navigation message, and
defined in the Earth-Centered-Earth-Fixed (ECEF) frame.

Field Description

PRN Pseudorandom noise number
SatelliteHealth Satellite health

GPSWeekNumber GPS week number, with time of ephemeris.
GPSTimeOfApplicability Time of Applicability, in seconds
SemiMajorAxis Semimajor axis, in meters

Eccentricity Eccentricity

2-215

2 Functions

2-216

Field

Description

Inclination

Inclination angle at reference time, in degrees

GeographicLongitudeOfOrbitalPlane

Longitude of ascending node of orbit plane at
weekly epoch, in degrees

RateOfRightAscension Reference rate of right ascension, in degrees per
second

ArgumentOfPerigee Argument of perigee, in degrees

MeanAnomaly Mean anomaly at the reference time, in degrees

Period Orbital period, in seconds

Data Types: struct

Galileo — Galileo orbit propagator fields

structure

The orbital elements are derived from the RINEX Galileo navigation message, and defined in the

Earth-Centered-Earth-Fixed (ECEF) frame.

Field Description

SatelliteID Satellite system number

GALWeekNumber GAL week number

TimeofEphemeris Time of ephemeris, in seconds
SatelliteHealth Satellite health

SemiMajorAxis Semimajor axis, in meters

Eccentricity Eccentricity

Inclination Inclination angle at reference time, in degrees

GeographicLongitudeOfOrbitalPlane

Longitude of ascending node of orbit plane at
weekly epoch, in degrees

RateOfRightAscension Reference rate of right ascension, in degrees per
second

ArgumentOfPerigee Argument of perigee, in degrees

MeanAnomaly Mean anomaly at the reference time, in degrees

Period Orbital period, in seconds

Data Types: struct

Data Types: struct

Version History
Introduced in R2021a

See Also
Objects

satelliteScenario | satelliteScenarioViewer

orbitalElements

Functions
groundStation | conicalSensor | transmitter | receiver | satellite

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

2-217

2 Functions

2-218

accessStatus

Package: matlabshared.satellitescenario

Status of access between first and last node defining access analysis

Syntax

s = accessStatus(ac)
s = accessStatus(ac,timeln)
[s,timeOut] = accessStatus()

Description

s = accessStatus(ac) returns a matrix s of the access status history between the first and last
node corresponding to each access object in the input vector ac.

s = accessStatus(ac,timeln) returns the status of each access analysis object at the specified
datetime in timeIn. Each element of s corresponds to an access object in ac.

[s,timeOut] = accessStatus() returns the status of each access analysis object and the
corresponding datetime in Coordinated Universal Time (UTC).

Examples

Obtain Access Status Between Satellite and Ground Station

Create a satellite scenario object.

startTime = datetime(2021,4,30);
stopTime = datetime(2021,5,1);

30 April 2021, 12:00 AM UTC
1 May 2021, 12:00 AM UTC

o® o° o°

sampleTime = 60; seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 10; % degrees
rightAscension0fAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Add a ground station to the scenario.

gs = groundStation(sc);

Add access analysis between the satellite and the ground station.

accessStatus

ac = access(sat,gs);
Obtain the access status at 30 April 2021, 5:34 PM UTC.

time = datetime(2021,4,30,17,34,0);
s = accessStatus(ac,time)

s = logical
0

Input Arguments

ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of Access objects.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timeln, the time zone is assumed to be UTC.

Outputs Arguments

s — Access analysis status
column vector | matrix

Access analysis status, returned as a column vector or a matrix. If timeIn is specified, s is a column
vector. Otherwise, the output is a matrix. The rows of the matrix correspond to the access object in
ac, and the columns correspond to the time sample. The status at a given instant is 1 (true) if access
exists between each pair of adjacent nodes defined by Sequence. For example, in a given pair,
defined by node 1 and node 2, node 1 has access to node 2 and node 2 has access to node 1:

* Ifanode is a satellite, then the satellite has access to the adjacent node when both nodes are in
line of sight of each other.

* Ifanode is a ground station, then the ground station has access to the adjacent node when the
elevation angle of the node with respect to the ground station is greater than or equal to the
MinElevationAngle property of GroundStation.

+ Ifanode is a conical sensor, then the conical sensor has access to the adjacent node when the
latter is in the field of view of the former. If the conical sensor is attached to a ground station
directly or via a gimbal, then the elevation angle of the adjacent node with respect to the ground
station must be greater than or equal to the MinElevationAngle property of GroundStation.

timeOut — Time samples of output access status
scalar | vector

Time samples of the output access status, returned as a scalar or vector. If the time history of the
access status is returned, timeOut is a row vector.

2-219

2 Functions

Note When the AutoSimulate property of the satellite scenario is true, the access status history
from StartTime to StopTime is returned. When the property is false, the access status history
from StartTime to SimulationTime is returned.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-220

states

states

Package: matlabshared.satellitescenario

Obtain position and velocity of satellite

Syntax

pos = states(sat)

[pos,velocity] = states(sat)

[1 = states(sat,timeln)

[1 = states(___ ,CoordinateFrame=C)
[pos,velocity,timeOut] = states()

Description

pos = states(sat) returns a 3-by-n-by-m array of the position history pos of each satellite in the
vector sat, where n is the number of time samples and m is the number of satellites. The rows
represent the x, y, and z coordinates of the satellite in the Geocentric Celestial Reference Frame
(GCREF).

[pos,velocity] = states(sat) returns a 3-by-n-by-m array of the inertial velocity velocity of
each satellite in the vector sat in the GCRE

[1 = states(sat,timeln) returns one or both of the outputs as 3-by-1-by-m arrays in
addition to the position at the specified datetime timeIn. If no time zone is specified in timeln, the
time zone is assumed to be Coordinated Universal Time (UTC).

[1 = states(__ ,CoordinateFrame=C) returns the outputs in the coordinates specified by
C.
[pos,velocity,timeOut] = states() returns the position and velocity history of the

satellites and the corresponding datetime in UTC.

Examples

Obtain States of Satellite in ECEF Frame

Create a satellite scenario object.

startTime = datetime(2021,5,25);

stopTime = datetime(2021,5,26);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);

May 25, 2021, 12:00 AM UTC
May 26, 2021, 12:00 AM UTC
In seconds

o® o° o°

Add a satellite to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat = satellite(sc,tleFile);

2-221

2 Functions

Obtain the position and velocity of the satellite in the Earth-centered Earth-fixed (ECEF) frame
corresponding to May 25, 2021, 10:30 PM UTC.

time = datetime(2021,5,25,22,30,0);
[position,velocity] = states(sat,time,"CoordinateFrame","ecef")

position = 3x1
107 x

-0.9431
-3.0675
2.7404

velocity = 3x1
103 x

-1.2166
0.4198
-1.6730

Input Arguments

sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timeln, the time zone is assumed to be UTC.

C — Coordinate frame
‘inertial’' | 'ecef' | 'geographical'’

Coordinate frame in which the outputs are returned, specified as 'inertial’', 'ecef’, or
'geographical’.
* The 'inertial' option returns the position and velocity coordinates in the GCRF.

* The 'ecef' option returns the position and velocity coordinates in the ECEF frame. For more
information on ECEF frames, see “Earth-Centered Earth-Fixed Coordinates”.

* The 'geographic' option returns the position as [lat; lon; altitude], where lat and lon are
latitude and longitude in degrees and altitude is the height above the surface of the Earth in
meters. The velocity returned is in the North-East-Down (NED) frame.

Output Arguments

pos — Position history
3-by-n-by-m array

2-222

states

Position history of the satellites in meters, returned as a 3-by-n-by-m array in the GCRE. n is the
number of time samples and m is the number of satellites.

When the AutoSimulate property of the satellite scenario is true, the position history from
StartTime to StopTime is returned. Otherwise, the position history from StartTime to
SimulationTime is returned.

velocity — Velocity history
3-by-n-by-m array

Velocity history of the satellites in meters per second, returned as a 3-by-n-by-m array in the GCRE. n
is the number of time samples and m is the number of satellites.

timeOut — Time samples of position and velocity
scalar | vector

Time samples of the position and velocity of the satellites, returned as a scalar or vector. If time
histories of the position and velocity of the satellite are returned, timeQut is a row vector.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
satellite | groundStation

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

2-223

2 Functions

gimbalAngles

Steering angles of gimbal

Syntax

az = gimbalAngles(gimbal)

[az,el] = gimbalAngles(gimbal)

[1 = gimbalAngles(gimbal, timeln)
[az,el,timeOut] = gimbalAngles(gimbal)

Description

az = gimbalAngles(gimbal) returns an array of gimbal azimuth az histories of the gimbals
defined in the vector gimbal.

[az,el] = gimbalAngles(gimbal) returns an array of gimbal azimuth azand gimbal elevation
el in the vector gimbal.

[1 = gimbalAngles(gimbal,timeIn) returns column vectors of gimbal azimuth and gimbal
elevation of gimbals defined in the vector gimbal at the specified time timeIn, depending on the
specified output arguments.

[az,el,timeOut] = gimbalAngles(gimbal) returns gimbal azimuth, gimbal elevation, and
corresponding time in UTC.

Examples

Retrieve Gimbal Angles at Specific Time

Create a satellite scenario object.

startTime = datetime(2020,10,10);
stopTime = datetime(2020,10,11);

10 October 2020, 12:00 AM UTC
11 October 2020, 12:00 AM UTC

o® o o°

sampleTime = 60; seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 10; % degrees
rightAscension0OfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Add a gimbal to the satellite.

g = gimbal(sat);

2-224

gimbalAngles

Point the gimbal at 0 degree latitude and longitude.
pointAt(g,[0; 0; 0]);
Get the gimbal azimuth and gimbal elevation corresponding to October 10, 2020, 20:54 PM UTC.

time = datetime(2020,10,10,20,54,0);
[az,el] = gimbalAngles(g,time)

az -5.4268

el 19.0368

Input Arguments

gimbal — Gimbal
scalar | vector

Gimbal object whose steering angle is being calculated, specified as either a scalar or a vector.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timelIn, the time zone is assumed to be UTC.

Output Arguments

az — Gimbal azimuth
array

Gimbal azimuth histories of gimbals in degrees, returned as an array in the range [-180,180]. Each
row corresponds to a gimbal in gimbal, and each column corresponds to a time sample. This
represents the angle of rotation of the gimbal about its y-axis.

If AutoSimulate of the satellite scenario is true, az returns the gimbal azimuth history from
StartTime to StopTime. Otherwise the gimbal azimuth history is returned from StartTime to
SimulationStatus.

el — Gimbal elevation
array

Gimbal elevation histories of gimbals in degree, returned as an array in the range [0,180]. This
represents the angle of rotation of the gimbal about its y-axis. Each row corresponds to a gimbal in
gimbal, and each column corresponds to a time sample. This represents the angle of rotation of the
gimbal about its x-axis.

If AutoSimulate of the satellite scenario is true, el returns the gimbal elevation history from
StartTime to StopTime. Otherwise the gimbal elevation history is returned from StartTime to
SimulationStatus.

timeOut — Time samples between start and stop time of scenario
scalar | vector

2-225

2 Functions

Time samples between start and stop time of the scenario, returned as a scalar or vector. If az and el
histories are returned, timeOut is a row vector.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-226

show

show

Package: matlabshared.satellitescenario

Show object in satellite scenario viewer

Syntax

show(item)
show(item,viewer)

Description
show(item) shows the item on all open Satellite Scenario Viewers.

show(item, viewer) shows the graphic on the Satellite Scenario Viewer specified by v.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000;15000000];
eccentricity = [0.01;0.02];

inclination = [0;10];
rightAscensionOfAscendingNode = [0;15];
argumentOfPeriapsis = [0;30];
trueAnomaly = [0;20];

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscensionOfAscendingNode,argumentOfPeriapsis, trueAnomaly)

sat =
1x2 Satellite array with properties:

Name

ID
ConicalSensors
Gimbals
Transmitters
Receivers
Accesses
GroundTrack

2-227

2 Functions

Orbit
OrbitPropagator
MarkerColor
MarkerSize
ShowlLabel
LabelFontColor
LabelFontSize

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,LeadTime=3600)

ans=1x2 object
1x2 GroundTrack array with properties:

LeadTime
TrailTime
LineWidth
LeadLineColor
TrailLineColor
VisibilityMode

Play the scenario and set the animation speed of the simulation to 40.

play(sc,PlaybackSpeedMultiplier=40)

& Satellte Ssenams Viesser - o

_'m i, S Ciographarn, snd S UiF e O ommandy' =
T Jun T 030 12908 00 UTC o un T 8600 UTC Jun 3§ 00 04000 06 UTC Jun ¥ 7008 06,00 08 UTC
| |

2-228

show

Input Arguments

item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object | Link object

The item, specified as a Satellite, GroundStation, ConicalSensors, GroundTrack,
FieldOfView, Access, or Link object. These objects must belong to the same
satelliteScenario object.

Note If itemis a satellite or a ground station, then the associated transmitters, receivers and
gimbals are also displayed on the viewer.

viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | hide | access | groundStation | conicalSensor | transmitter | receiver

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

2-229

2 Functions

hide
Package: matlabshared.satellitescenario

Hide satellite scenario entity from viewer

Syntax

hide(item)
hide(item,viewer)

Description

hide(item) hides the specified satellite scenario entity from all open instances of the Satellite
Scenario Viewer.

hide(item,viewer) hides the specified satellite scenario entity on the Satellite Scenario Viewer
specified by viewer.

Examples

Hide Satellite from Satellite Scenario Viewer

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 0; % degrees
rightAscension0OfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Visualize the satellite by using the Satellite Scenario Viewer.

viewer = satelliteScenarioViewer(sc);

2-230

hide

ry Satellte Scenamd Viewer _ o

oo D, Maow, Darfhete Ceographes, and & GE Uses Commanity
A5 000 UTC My 31 2053 18 84000 UTC By 39 000 17 08000 UTE
| |

Hide the satellite from the viewer.

hide(sat,viewer);

2-231

2 Functions

& Satellde Scenamd Viewer = o

@

-
S0
by 30 KD tore [, Maxw, | arfhate Caaograghs, snd S G s Gommunty

14AZ 40 LTS
TS, iy 54 ST 15 00000 UTC Wy 51 2077 1800060 UTC Wiy $1 S 17 00 00 T
| | |

Input Arguments

item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object | Link object

The item, specified as a Satellite, GroundStation, ConicalSensors, GroundTrack,
FieldOfView, Access, or Link object. These objects must belong to the same
satelliteScenario object.

viewer — Satellite Scenario Viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite Scenario Viewer, specified as a scalar satelliteScenarioViewer object or a vector or
array of satelliteScenarioViewer objects.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

2-232

hide

Functions
show | hideAll | showAll

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-233

2 Functions

2-234

ebno

Package: satcom.satellitescenario

Eb/No at final node of link

Syntax

e = ebno(1lnk)
e = ebno(1lnk, timeln)
[e,timeOut] = ebno()

Description

e = ebno(1lnk) returns a matrix e of the history of received values for energy per bit to noise power
spectral density (Eb/No) in dB at the final node in each possible multihop link in the vector 1nk. The
rows of the matrix correspond to the link object in Lnk and the columns correspond to the time
sample.

e = ebno(lnk,timeIn) returns a column vector of Eb/No e in dB at the final node in each link
defined in the vector 1nk at the specified datetime timein. Each element of e corresponds to a link
in Unk. If no time zone is specified in timeIn, the time zone is assumed to be Coordinated Universal
Time(UTC).

[e,timeOut] = ebno() returns the received Eb/No values and the corresponding times in
UTC.

Examples

Retrieve Time Samples and Eb/No of Reciever

Create a satellite scenario object.

startTime = datetime(2021,12,12,10,42,0);

stopTime = startTime + days(1l);

sampleTime = 5000; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 0; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,
inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly);

Add a transmitter to the satellite.

ebno

tx = transmitter(sat);

Add a ground station to the scenario.

latitude = 0;
longitude = 30;

gs = groundStation(sc,latitude,longitude);

Add a receiver to the ground station.

rx =

Add link analysis to the transmitter.

lnk = link(tx, rx);

receiver(gs,MountingAngles=[0; 180; 0]);

egrees
egrees

Get the Eb/No history at the receiver and the time samples.

[e,t] = ebno(lnk)
e = 1Ix19
-Inf -Inf -Inf -Inf

t = 1Ix19 datetime
Columns 1 through 3

12-Dec-2021 10:42:00
Columns 4 through 6

12-Dec-2021 14:52:00
Columns 7 through 9

12-Dec-2021 19:02:00
Columns 10 through 12

12-Dec-2021 23:12:00
Columns 13 through 15

13-Dec-2021 03:22:00
Columns 16 through 18

13-Dec-2021 07:32:00
Column 19

13-Dec-2021 10:42:00

-Inf -Inf

12-Dec-2021

12-Dec-2021

12-Dec-2021

13-Dec-2021

13-Dec-2021

13-Dec-2021

-Inf

12:

16:

20:

00:

04:

08:

05:

15:

25:

35:

45:

55:

-Inf

20

20

20

20

20

20

-Inf -Inf

12-Dec-2021

12-Dec-2021

12-Dec-2021

13-Dec-2021

13-Dec-2021

13-Dec-2021

-Inf

13:

17:

21:

01:

06:

10:

28:

38:

48:

58:

08:

18:

-Inf

40

40

40

40

40

40

-Inf

-Inf -Inf

2-235

-Inf

2 Functions

2-236

Compute Pointing Loss of Satellite and Ground Station

This example demonstrates a simple technique for incorporating random pointing loss at the transmit
and receive antennas in a space-to-ground radio link. Caluclate the link margin without pointing loss,
and then you add the random sequences of pointing loss to the result.

Define parameters for pointing error simulation.

freq = 8; % Carrier frequency, GHz

satAntDiam = 0.4; % Satellite antenna diameter, m

satAntEff = 0.43; % Satellite antenna efficiency, (0,1]

satAntPtErr = 0.5; % Satellite antenna std. dev. pointing error, deg
gsAntDiam = 2.7; % Ground antenna diameter, m

gsAntEff = 0.63; % Ground antenna efficiency, (0,1]

gsAntPtErr = 0.2; % Ground antenna std. dev. pointing error, deg
gsNoiseTemp = 150; % Ground system noise temperature, Kelvin

regEbNo = 13.0; Required Eb/No for 8PSK BER=1le-5, decibels

Create a satellite scenario object.

startTime = datetime(2020,8,19,22,35,0);

stopTime = datetime(2020,8,19,23,15,0);

sampleTime = 1; % Seconds
sc = satelliteScenario(startTime,stopTime, sampleTime);

Add satellite orbital elements for a sun-synchronous satellite.

sat = satellite(sc,7*1e6,0.0002178,97.8356,359.1795,135.7406,224.3991);

satTx = transmitter(sat,Frequency=freg*le9,BitRate=60,Power=3);

satAnt = gaussianAntenna(satTx,DishDiameter=satAntDiam,
ApertureEfficiency=satAntEff);

gs = groundStation(sc,Latitude=69.649208,Longitude=18.955324,
Altitude=0.35,MinElevationAngle=5.0);

gsGim = gimbal(gs,MountingAngles=[0;180;0],
MountingLocation=[0;0;-5]);

wavelLen = physconst("lightspeed")/(freq*1e9);

pkG = 10*1logl0(gsAntEff*((pi*gsAntDiam)/wavelLen)”2); % Peak antenna gain, dBi

gsRx = receiver(gsGim,MountingLocation=[0;0;1],
GainToNoiseTemperatureRatio=pkG-10*10ogl0(gsNoiseTemp),
RequiredEbNo=regEbNo) ;

pointAt(sat,gs);
pointAt(gsGim,sat);

lnk = link(satTx,gsRx);
[e, time] = ebno(lnk);

Generate a random sequence of pointing losses for transmit and receiver antennas.

satAntPtErrRad = deg2rad(satAntPtErr);

satRanAngle = (satAntPtErrRad)*randn(1l,length(time));

satRanAngle = filter(ones(1,10)/sqrt(10),1,satRanAngle);

satBeamWidth = (wavelLen/(satAntDiam*sqrt(satAntEff)));

satPeakGain = 10*logl0(satAntEff*((pi*satAntDiam)/wavelLen)”2);

satRanAntGain = 10*logl0O(satAntEff*(((pi.*satAntDiam)./ ...
wavelen).”2).*exp(-2.76*((satRanAngle./satBeamWidth).”2)));

o° o° o° o°

Peak gain, dBi

o° o o°

satRanPtLoss = satPeakGain - satRanAntGain;

Random pointing angle error,
Model control loop filtering
3 dB beamwidth, radians

I

Antenna gain at off-boresight
from Satellite Communications,
Random pointing loss, dB

ebno

gsAntPtErrRad = deg2rad(gsAntPtErr);

gsRanAngle (gsAntPtErrRad)*randn(1, length(time));

gsRanAngle filter(ones(1,10)/sqrt(10),1,gsRanAngle);

gsBeamWidth = wavelLen/(gsAntDiam*sqrt(gsAntEff));

gsPeakGain = 10*logl@(gsAntEff*((pi*gsAntDiam)/wavelLen)”"2);

gsRanAntGain = 10*1ogl0(gsAntEff*(((pi.*gsAntDiam)./ ...
wavelen).”2).*exp(-2.76*((gsRanAngle./gsBeamWidth).”2)));

gsRanPtLoss = gsPeakGain - gsRanAntGain;

Compute composite pointing losses.

totRanPtLoss = satRanPtLoss + gsRanPtLoss;

Compute the link margin.

margin = e-totRanPtLoss-gsRx.RequiredEbNo;
plot(time,margin,LineWidth=2);

title("Link Margin vs. Time");

ylim([-3 16]);

xlabel("Time");

ylabel("Link Margin (dB)");

grid on;

Random pointing angle error, rx
Model control loop filtering

3 dB beamwidth, radians

Peak gain, dBi

o° o° o° o°

Antenna gain at off-boresight :
from Satellite Communications,
Random pointing loss, dB

o° o o°

6 Link Margin vs. Time

14

B)
- -
T T T T

.
T

Link Margin (d

22:56
Time

22:58
Aug 19, 2020

23:00

2-237

2 Functions

2-238

Input Arguments

1nk — Link analysis
Link object vector | Link object scalar

Link analysis object, specified as a Link object vector or scalar.

timeIn — Time at which output is calculated
datetime scalar

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timelIn, the time zone is assumed to be UTC.

Output Arguments

e — Eb/No
scalar | vector | matrix

Energy per bit to noise power spectral density (Eb/No), returned as a scalar, vector, or matrix. If
timeln is not specified, e is a row vector or a matrix.

timeOut — Time samples of output Eb/No
scalar | vector

Time samples of the output Eb/No, returned as a scalar or vector. If time history of Eb/No is returned,
timeOut is a row vector.

Note When the AutoSimulate property of the satellite scenario is true, the Eb/No history from
StartTime to StopTime is returned. When the property is false, the Eb/No history from
StartTime to SimulationTime is returned.

Algorithms

The Eb/No in dB is calculated as
EbNo = txPower + txAntennaGain - txSystemLoss - pathloss + rxAntGaintoNoiseTempRatio -
10*log10(K) - rxSystemLoss - 10*log10(bitRate) - 60

where:

* txPower is the transmitter power in dBW.

* txAntennaGain is the transmitter antenna gain in dB.

* txSystemLoss is the transmitter system loss in dB.

* pathloss is the path loss in dB.

* rxAntGaintoNoiseTempRatio is the receiver antenna gain to noise temperature ratio.

* K is the Boltzmann constant.

* rxSystemLoss is the receiver system loss in dB.

* DbitRate is the bit rate in Mbps.

ebno

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | satelliteScenarioViewer | Link

Functions
show | play | hide

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-239

2 Functions

2-240

access

Package: matlabshared.satellitescenario

Add access analysis objects to satellite scenario

Syntax

access(assetl,asset2,...)

ac = access(, 'Viewer',Viewer)

ac = access()

Description

access(assetl,asset2,...) adds Access analysis objects defined by nodes assetl, asset2,
and so on.

ac = access(, 'Viewer',KViewer) sets the viewer in addition to any input argument

combination from previous syntaxes. For example, 'Viewer', v1 picks the viewer v1.

ac = access() returns added access analysis objects in the row vector ac.

Examples

Add Ground Stations to Scenario and Visualize Access Intervals

Create a satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020,5,1,11,36,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);
lat 10;

lon -30;

gs = groundStation(sc,lat,lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 10;

rightAscension0OfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscension0OfAscendingNode,argumentOfPeriapsis, trueAnomaly) ;

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat,gs);
intvls = accessIntervals(ac)

access

intvls=8x8 table

Source Target IntervalNumber StartTime EndTi
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

4+ Satellte Scenana Viewer - o

-
Bl

1 Souroe: L, Maxer, [arfwter Caograghics, snd S G U Communty

Liay
11000 UTC
\ 1 e

n 1200000 UTC Ry 1 hOCHD 600 G0 LI By 2 00 08 60 00 UTC May 2 Mhd 06 00 00 UTC
B | |

Input Arguments

assetl,asset2,... — Satellite, ground station, or conical sensor
scalar | vector

Satellite, GroundStation, or ConicalSensors object, specified as a scalar or vector. These

objects must belong to the same satelliteScenario object. The function adds the access analysis
object to the Accesses property of the corresponding asset in assetl.

2-241

2 Functions

2-242

» Ifthe asset in a given node is a scalar, every analysis object uses the same asset for that node
position.

+ Ifthe asset in a given node is a vector, its length must equal the number of access analysis objects.
Each access analysis object uses the corresponding element of the asset vector for that node
location.

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

Output Arguments

ac — Access analysis
scalar | vector

Access analysis between input objects, returned as either a scalar or vector.

Note When the AutoSimulate property is set to false, SimulationStatus must be NotStarted
to call access function. Otherwise, use the restart function to reset the SimulationStatus to
NotStarted. Note that restart also erases the simulation data.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

groundStation

groundStation

Package: matlabshared.satellitescenario

Add ground station to satellite scenario

Syntax

groundStation(scenario)
groundStation(scenario, lat, lon)
groundStation(,Name,Value)
gs = groundStation()

Description

groundStation(scenario) adds a default GroundStation object to the specified satellite
scenario.

groundStation(scenario, lat, lon) sets the Latitude and Longitude properties of the ground
station to lat and lon, respectively. lat and Lon must be of the same length. This length specifies
the number of ground stations that the function adds to the input scenario. Together, lat and lon
indicate the locations of the ground stations.

groundStation(,Name, Value) sets options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes. For example,
'MinElevationAngle', 10 specifies a minimum elevation angle of 10 degrees.

gs = groundStation() returns a vector of handles to the added ground stations. Specify any
input argument combination from previous syntaxes.

Examples

Add Ground Stations to Scenario and Visualize Access Intervals

Create a satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020,5,1,11,36,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);
lat 10;

lon -30;

gs = groundStation(sc,lat,lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;

inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;

2-243

2 Functions

2-244

trueAnomaly = 0;

S

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

a
i

at = satellite(sc,semiMajorAxis,eccentricity,inclination,

rightAscension0OfAscendingNode,argumentOfPeriapsis, trueAnomaly) ;

C = access(sat,gs);

ntvls = accessIntervals(ac)

intvls=8x8 table

Play the scenario to visualize the ground stations.

p

Source Target IntervalNumber StartTime EndTi
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

lay(sc)

4+ Satellte Scenana Viewer

-

S0
ey 1 TR
113808 UTE:
4 11 »

Souroe: L, Maxer, [arfwter Caograghics, snd S G U Communty
By 2 00 08 60 00 UTC
|

n 1E00:00 UTC
A

Ty 1 HC 10000 U
|

May 2 Mhd 06 00 00 UTC

groundStation

Input Arguments

scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

lat, lon — Latitude and longitude
real-valued scalar | real-valued vector

Latitude and longitude of the ground station, specified as a real-valued scalar or real-valued vector.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: '"MinElevationAngle', 10 specifies a minimum elevation angle of 10 degrees.

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

Name — groundStation name
"groundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the groundStation function. After you call
groundStation function, this property is read-only.

groundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.
» If only one groundStation is added, specify Name as a string scalar or a character vector.

» If multiple groundStations are added, specify Name as a string scalar, character vector, string
vector or a cell array of character vectors. All groundStations added as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vector must equal the number of groundStations being added.
Each groundStation is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by satellite scenario.

Data Types: char | string

Latitude — Geodetic latitude of ground stations
42 .3001 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

2-245

2 Functions

2-246

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

+ Ifyou add only one ground station, specify Latitude as a scalar double.

+ Ifyou add multiple ground stations, specify Latitude as a vector double whose length is equal to
the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.
Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range
[-180, 180].
* Ifyou add only one ground station, specify longitude as a scalar.

+ Ifyou add multiple ground stations, specify longitude as a vector whose length is equal to the
number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to groundStation, longitude specified
as a name-value argument takes precedence.
Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Altitude of ground stations, specified as a scalar or a vector.

» If you specify Altitude as a scalar, the value is assigned to each ground station in the
groundStation.

» If you specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the groundStation.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.

Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, and for
the ground station to be visible from the satellite in degrees, specified as a scalar or row vector.
Values must be in the range [-90, 90]. For access and link closure to be possible, the elevation angle
must be at least equal to the value specified in MinElevationAngle.

groundStation

» Ifyou specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
groundStation.

» Ifyou specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the groundStation.

When the AutoSimulate property of the satellite scenario is false, MinElevationAngle property
can be modified while the SimulationStatus is NotStarted or InProgress.

Data Types: double

Output Arguments

gs — Ground station in scenario
GroundStation object

Ground station in the scenario, returned as a GroundStation object belonging to the satellite
scenario specified by the input scenario.

You can modify the GroundStation object by changing its property values. The name-value
arguments used when calling this function correspond to property names.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | satellite | access | transmitter | receiver

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

2-247

2 Functions

2-248

transmitter

Package: matlabshared.satellitescenario

Add transmitter to satellite scenario

Syntax

transmitter(parent)
transmitter(parent,Name=Value)
tx = transmitter()
Description

transmitter(parent) adds a Transmitter object to the parent which can be a Satellites,
GroundStations, or Gimbals.

transmitter(parent,Name=Value) adds transmitters to parents in parent using additional
parameters specified by optional name-value arguments. For example, MountingAngle=[20; 35;
10] sets the yaw, pitch, and roll angles of the transmitter to 20, 35, and 10 degrees, respectively.

tx = transmitter() returns added transmitters as a row vector tx. Specify any input
argument combination from previous syntaxes.

Note When the AutoSimulate property of the satellite scenario is false, you can call the
transmitter function only when SimulationStatus is NotStarted. Otherwise, you must call the
restart function to erase the simulation data and reset SimulationStatus to NotStarted.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020
SampleTime: 60
AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
Viewers: [0x0 matlabshared.satellitescenario.Viewer]

transmitter

AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 60;

rightAscensionOfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0OfAscendingNode,
argumentOfPeriapsis,trueAnomaly,Name="Satellite");

Add gimbals to the satellite. These gimbals enable the satellite receiver antenna to steer to the first
ground station, and its transmitter antenna to steer to the second ground station.

gimbalrxSat
gimbaltxSat

gimbal(sat);
gimbal(sat);

Add a receiver to the first gimbal of the satellite.

gainToNoiseTemperatureRatio = 5;

systemLoss = 3;

rxSat = receiver(gimbalrxSat,Name="Satellite Receiver",GainToNoiseTemperatureRatio= ...
gainToNoiseTemperatureRatio,SystemLoss=systemLoss)

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 4
MountingLocation: [0; O; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
SystemLoss: 3 decibels
PreReceiverLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Add a transmitter to the second gimbal of the satellite.

frequency = 27e9;

power = 20;

bitRate = 20;

systemLoss = 3;

txSat = transmitter(gimbaltxSat,Name="Satellite Transmitter",Frequency=frequency,
power=power,BitRate=bitRate,SystemLoss=systemLoss)

o® o° o° of

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 5
MountingLocation: [0; 0; 0] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels

2-249

% met
% deg
% deg
% deg
% deg

% dB/K

% dB

Hz

dBW

Mbps

dB

2 Functions

2-250

Frequency: 2.7e+10 Hertz
BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters

apertureEfficiency = 0.5;
gaussianAntenna(txSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);
gaussianAntenna(rxSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,Name="Ground Station 1");

latitude = 52.2294963; %
longitude = 0.1487094; %
gs2 = groundStation(sc,latitude,longitude,Name="Ground Station 2");

egrees
egrees

d
d
Point gimbals of the satellite towards the two ground stations for the simulation duration.

pointAt(gimbaltxSat,gs2);
pointAt(gimbalrxSat,gsl);

Add gimbals to the ground stations. These gimbals enable the ground station antennas to steer
towards the satellite.

gimbalgsl
gimbalgs?2

gimbal(gsl);
gimbal(gs2);

Add a transmitter to ground station gs1.
frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalgsl,Name="Ground Station 1 Transmitter",Frequency=frequency,
Power=power,BitRate=bitRate);

Add a receiver to ground station gs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalgs2,Name="Ground Station 2 Receiver",RequiredEbNo=requiredEbNo);

Define the antenna specifications of the ground stations.
dishDiameter = 5; % meters

gaussianAntenna(txGsl,DishDiameter=dishDiameter);
gaussianAntenna(rxGs2,DishDiameter=dishDiameter);

Point gimbals of the ground stations towards the satellite for the simulation duration.

pointAt(gimbalgsl,sat);
pointAt(gimbalgs2,sat);

Add link analysis to transmitter txGs1.

Ink = link(txGsl, rxSat,txSat, rxGs2)

o® o° o°

=Q T

T =

transmitter

lnk =
Link with properties:

Sequence: [10 4 5 11]

LineWidth: 2
LineColor: [0.3922 0.8314 0.0745]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(1lnk)
ans=4x8 table
Source Target IntervalNumber Star
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov-20:

Visualize the link by using the Satellite Scenario Viewer.

play(sc);

Guinaitae Ean, M Eawtheiled Caiiitituis, wiul P G5 et Civrerrely
B0 B8 UTC ﬂpuvﬁ'."ﬂ:'ﬂ 5 0 0 LITC How 35 3020 17 80:00 UTC Mo 25 70000 1800 83 UTC Hiow 26 030
Al | | |

2-251

2 Functions

2-252

Input Arguments

parent — Element of scenario to which transmitter is added
scalar | vector

Element of scenario to which the transmitter is added, specified as a scalar or vector of satellites,
ground stations or gimbals. The number of transmitters specified is determined by the size of the
inputs.

» If parent is a scalar, all transmitters are added to the parent.

+ If parent is a vector and the number of transmitters specified is one, that transmitter is added to
each parent.

» If parent is a vector and the number of transmitters specified is more than one, the number of
transmitters must equal the number of parents and each parent gets one transmitter.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: MountingAngle=[20; 35; 10] sets the yaw, pitch, and roll angles of the transmitter to
20, 35, and 10 degrees, respectively.

Name — Transmitter name
"Transmitter idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the transmitter function. After you call the
transmitter function, this property is read-only.

Transmitter name, specified as a name-value argument consisting of 'Name ' and a string scalar,
string vector, character vector, or a cell array of character vectors.

* Ifyou are adding only one transmitter, specify Name as a string scalar or a character vector.

* Ifyou are adding multiple transmitters, specify Name as a string scalar, character vector, string
vector, or a cell array of character vectors. All transmitters that you add as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vectors must equal the number of transmitters that you are
adding. Each transmitter is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by the satellite scenario.

Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; O; O] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

» Ifyou are adding one transmitter, MountingLocation is a three-element vector. The elements
specify the x, y, and z components of the Cartesian coordinates in the body frame of transmitter.

transmitter

» Ifyou are adding multiple transmitters, MountingLocation can be a three-element vector or a
matrix. When specified as a vector, the same set of mounting locations are assigned to all specified
transmitters. When specified as a matrix, MountingLocation must contain three rows and the
same number of columns as the transmitters. The columns correspond to the mounting location of
each specified transmitter and the rows correspond to the mounting location coordinates in the
parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountinglLocation property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; O; O] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll, in that
order. Yaw, pitch, and roll are positive rotations about the z-axis, intermediate y-axis, and
intermediate x-axis of the parent.

* Ifyou are adding one transmitter, the MountingAngles property is a three-element vector.

* Ifyou are adding multiple transmitters the MountingAngles property can be a three-element
vector or a matrix. When specified as a vector, the same set of mounting angles are assigned to all
specified transmitters. When specified as a matrix, MountingAngles must contain three rows
and the same number of columns as the transmitters. The columns correspond to the mounting
angles of each specified transmitter and the rows correspond to the yaw, pitch, and roll angles in
the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Example: [0; 30; 60]
Data Types: double

Antenna — Antenna object associated with transmitter
scalar | vector

Antenna object associated with the transmitter, specified as either a scalar or a vector. This object
can be the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array
System Toolbox. The default Gaussian antenna has a dish diameter of 1 meter and an aperture
efficiency of 0.65.

Antenna can be specified in transmitter as a name-value argument consisting of 'Antenna’ and a
scalar, antenna or phased array objects.

» Ifyou are adding only one transmitter, Antenna must be a scalar.

» Ifyou are adding multiple transmitters, Antenna is a vector. The same antenna is assigned to all
transmitters.

2-253

2 Functions

2-254

SystemLoss — Total system loss in the transmitter
5 (default) | scalar | vector

Total system loss in the transmitter in dB, specified as a scalar or a vector.

System loss can be specified in transmitter as a name-value argument consisting of 'SystemLoss'
and a scalar, or vector.

» If you are adding only one transmitter, specify SystemLoss as a scalar.

* Ifyou are adding multiple transmitters are added, specify SystemLoss as a scalar or a vector.
When SystemLoss is a scalar, the same SystemLoss is assigned to all transmitters. When
SystemlLoss is a vector, its length must equal the number of transmitter and each element of
SystemLoss is assigned to the corresponding transmitter in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the
SystemLoss value while SimulationStatus is NotStarted or InProgress.

Frequency — Transmitter frequency
14e9 (default) | scalar | vector

Transmitter frequency in Hz, specified as a name-value argument consisting of 'Frequency' and a
scalar or a vector.

* Ifyou are adding only one transmitter, the Frequency must be a scalar.

* Ifyou are adding multiple transmitters are added, the frequency value can be a scalar or a vector.
All transmitters added as a scalar are assigned the same specified Frequency. The length of the
vector must equal the number of transmitters added and each element of Frequency is assigned
to the corresponding transmitter in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the Frequency
value while SimulationStatus is NotStarted or InProgress.

BitRate — Bit rate of transmitter
10 (default) | scalar | vector

Bit rate of the transmitter in Mbps, specified as a name-value pair consisting of 'BitRate' and a scalar
or a vector.

* Ifyou are adding only one transmitter, the bit rate value must be a scalar.

» Ifyou are adding multiple transmitters, the bit rate value can be a scalar or a vector. All
transmitters added as a scalar are assigned the same specified BitRate. The length of the vector
must equal the number of transmitters added and each element of BitRate is assigned to the
corresponding transmitter in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the BitRate
value while SimulationStatus is NotStarted or InProgress.

Power — Power of high power amplifier
12 (default) | scalar | vector

Power of the high power amplifier in dbW, specified as a name-value pair consisting of 'Power' and a
scalar or a vector.

» Ifyou are adding only one transmitter, the power value must be a scalar.

transmitter

» Ifyou are adding multiple transmitters, the power value can be a scalar or a vector. All
transmitters added as a scalar are assigned the same specified Power. The length of the vector
must equal the number of transmitters added and each element of Power is assigned to the
corresponding transmitter in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the Power value
while SimulationStatus is NotStarted or InProgress.

Output Arguments

tx — Transmitter
row vector

Transmitters attached to parent, returned as a row vector.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | show | groundStation | access | link | receiver | hide | pattern

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

2-255

2 Functions

2-256

receiver

Package: matlabshared.satellitescenario

Add receiver to satellite scenario

Syntax

receiver(parent)
receiver(parent,Name=Value)
rx = receiver()

Description

receiver(parent) adds a Receiver object to the parent using default parameters. parent can
be a Satellites, GroundStations, or Gimbals.

receiver(parent,Name=Value) adds receivers to parents in parent using additional parameters
specified by optional name-value arguments. For example, MountingAngle=[20; 35; 10] sets the
yaw, pitch, and roll angles of the transmitter to 20, 35, and 10 degrees, respectively.

rx = receiver() returns added receivers as a row vector rx. Specify any input argument
combination from previous syntaxes.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020

SampleTime: 60

AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]

Viewers: [0x0 matlabshared.satellitescenario.Viewer]
AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000;
eccentricity = 0;

mete

receiver

inclination = 60; %
rightAscension0fAscendingNode = 0; %
argumentOfPeriapsis = 0; %
trueAnomaly = 0; %
sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly,Name="Satellite");
Add gimbals to the satellite. These gimbals enable the satellite receiver antenna to steer to the first
ground station, and its transmitter antenna to steer to the second ground station.
gimbalrxSat = gimbal(sat);
gimbaltxSat = gimbal(sat);
Add a receiver to the first gimbal of the satellite.
gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(gimbalrxSat,Name="Satellite Receiver",GainToNoiseTemperatureRatio= ...
gainToNoiseTemperatureRatio,SystemLoss=systemLoss)
rxSat =
Receiver with properties:
Name: Satellite Receiver
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
PreReceiverLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels
Add a transmitter to the second gimbal of the satellite.
frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB

txSat = transmitter(gimbaltxSat,Name="Satellite Transmitter",Frequency=frequency,
power=power,BitRate=bitRate,SystemLoss=systemLoss)

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 5
MountingLocation: [Q; 0; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Specify the antenna specifications of the repeater.

2-257

deg
deg
deg
deg

2 Functions

2-258

dishDiameter = 0.5; % meters

apertureEfficiency = 0.5;
gaussianAntenna(txSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);
gaussianAntenna(rxSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,Name="Ground Station 1");

latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude, longitude,Name="Ground Station 2");

Point gimbals of the satellite towards the two ground stations for the simulation duration.

pointAt(gimbaltxSat,gs2);
pointAt(gimbalrxSat,gsl);

Add gimbals to the ground stations. These gimbals enable the ground station antennas to steer
towards the satellite.

gimbalgsl
gimbalgs2

gimbal(gsl);
gimbal(gs2);

Add a transmitter to ground station gs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalgsl,Name="Ground Station 1 Transmitter",Frequency=frequency,
Power=power,BitRate=bitRate);

Add a receiver to ground station gs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalgs2,Name="Ground Station 2 Receiver",RequiredEbNo=requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,DishDiameter=dishDiameter);
gaussianAntenna(rxGs2,DishDiameter=dishDiameter);

Point gimbals of the ground stations towards the satellite for the simulation duration.

pointAt(gimbalgsl,sat);
pointAt(gimbalgs2,sat);

Add link analysis to transmitter txGs1.

lnk link(txGs1, rxSat, txSat, rxGs2)

lnk =
Link with properties:

Sequence: [10 4 5 11]

LineWidth: 2
LineColor: [0.3922 0.8314 0.0745]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

o® o o°

=Q T

=

©

receiver

linkIntervals(1lnk)
ans=4x8 table
Source Target IntervalNumber Star
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov-20:

Visualize the link by using the Satellite Scenario Viewer.

play(sc);

aaa' Eartiridar G mpiais, @] T GE5 Pt

Fﬁuv}ii"ﬂ:'d 5 B 0 LITC How 35 2020 13 60:08 UTC Here 25 7ECHD 1800 &3 UTC Mo 26 M
| | |

Input Arguments

parent — Element of scenario to which receiver is added
scalar | vector

Element of scenario to which the receiver is added, specified as a scalar or vector of satellites,
ground stations or gimbals. The number of receivers specified is determined by the size of the inputs.

» If parent is a scalar, all receivers are added to the parent.

» If parent is a vector and the number of receivers specified is one, that receiver is added to each
parent.

2-259

2 Functions

» If parent is a vector and the number of receivers specified is more than one, the number of
receivers must equal the number of parents and each parent gets one receiver.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: MountingAngle=[20; 35; 10] sets the yaw, pitch, and roll angles of the receiver to 20,
35, and 10 degrees, respectively.

Name — Receiver name
"Receiver 1idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling the receiver function. After you call the receiver
function, this property is read-only.

Receiver name, specified as a name-value argument consisting of 'Name' and a string scalar, string
vector, character vector, or a cell array of character vectors.

+ Ifyou are adding only one receiver, specify Name as a string scalar or a character vector.

+ Ifyou are adding multiple receivers, specify Name as a string scalar, character vector, string
vector, or a cell array of character vectors. All receivers that you add as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vectors must equal the number of receivers that you are adding.
Each receiver is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by the satellite scenario.

Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; O; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

* Ifyou are adding one receiver, MountinglLocation is a three-element vector. The elements
specify the x, y, and z components of the Cartesian coordinates in the body frame of receiver.

* Ifyou are adding multiple receivers, MountingLocation can be a three-element vector or a
matrix. When specified as a vector, the same set of mounting locations are assigned to all specified
receivers. When specified as a matrix, MountinglLocation must contain three rows and the same
number of columns as the receivers. The columns correspond to the mounting location of each
specified receiver and the rows correspond to the mounting location coordinates in the parent
body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountinglLocation property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Data Types: double

2-260

receiver

MountingAngles — Mounting orientation with respect to parent object
[0; O; O] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll, in that
order. Yaw, pitch, and roll are positive rotations about the z-axis, intermediate y-axis, and
intermediate x-axis of the parent.

» Ifyou are adding one receiver, the MountingAngles property is a three-element vector.

» If you are adding multiple receivers the MountingAngles property can be a three-element vector
or a matrix. When specified as a vector, the same set of mounting angles are assigned to all
specified receivers. When specified as a matrix, MountingAngles must contain three rows and
the same number of columns as the receivers. The columns correspond to the mounting angles of
each specified receiver and the rows correspond to the yaw, pitch, and roll angles in the parent
body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Example: [0; 30; 60]
Data Types: double

Antenna — Antenna object associated with receiver
scalar | vector

Antenna object associated with the receiver, specified as either a scalar or a vector. This object can
be the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array System
Toolbox. The default Gaussian antenna has a dish diameter of 1 meter and an aperture efficiency of
0.65.

Antenna can be specified in receiver as a name-value argument consisting of 'Antenna’ and a

scalar, antenna or phased array objects.

* Ifyou are adding only one receiver, Antenna must be a scalar.

» Ifyou are adding multiple receivers, Antenna is a vector. The same antenna is assigned to all
receivers.

SystemLoss — System loss in receiver
5 (default) | scalar | vector

System loss in dB, specified as a scalar or a vector. SystemLoss must be greater than or equal to
PreReceiverLoss.

System loss can be specified in receiver function as a name-value argument consisting of
'SystemlLoss' and a scalar, or a vector.

* Ifyou are adding only one receiver, SystemLoss is a scalar.

» Ifyou are adding multiple receivers, SystemLoss is a scalar or a vector. When SystemLoss is a
scalar, the same SystemLoss is assigned to all receivers. When SystemLoss is a vector, its
length must equal the number of receivers and each element of SystemLoss is assigned to the
corresponding receivers in the parent.

2-261

2 Functions

2-262

If you specify PreReceiverlLoss property as a name value argument in receiver function , the
default value is the greater of 5 dB and the specified PreReceiverlLoss value.

When the AutoSimulate property of the satellite scenario is false, you can modify the
SystemlLoss value while SimulationStatus is NotStarted or InProgress.

PreReceiverLoss — Pre-receiver loss
3 (default) | scalar | vector

Pre-receiver loss in dB, specified as a scalar or a vector. This is the total loss before the receiver input
in the receiver system, such as feeder loss, radome loss, and loss due to polarization mismatch.
PreReceiverLoss must be less than or equal to SystemLoss.

Pre-receiver loss can be specified in receiver function as a name-value pair consisting of
'"PreReceiverLoss' and a scalar, or a vector.

» Ifyou are adding only one receiver, PreReceiverLoss is a scalar.

* Ifyou are adding multiple receivers, PreReceiverlLoss is a scalar or a vector. When
PreReceiverlLoss is a scalar, the same PreReceiverLoss is assigned to all receivers. When
PreReceiverlLoss is a vector, its length must equal the number of receivers and each element of
PreReceiverLoss is assigned to the corresponding receivers in the parent.

If you specify SystemLoss property as a name value argument in receiver function , the default
value is the lesser of 3 dB and the specified SystemLoss value.

When the AutoSimulate property of the satellite scenario is false, you can modify the
PreReceiverlLoss value while SimulationStatus is NotStarted or InProgress.

GainToNoiseTemperatureRatio — Gain to noise temperature ratio
3 (default) | scalar | vector

Gain to noise temperature ratio of the antenna in dB per Kelvin, specified as the name-value
argument consisting of 'GainToNoiseTemperatureRatio' and a scalar or a vector.

+ Ifyou are adding only one receiver, GainToNoiseTemperatureRatio is a scalar.

+ Ifyou are adding multiple receivers, GainToNoiseTemperatureRatio is a scalar, or a vector.
When GainToNoiseTemperatureRatio is a scalar, the same GainToNoiseTemperatureRatio
is assigned to all receivers. When GainToNoiseTemperatureRatio is a vector, its length must
equal the number of receivers and each element of GainToNoiseTemperatureRatio is assigned
to the corresponding receiver in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the
GainToNoiseTemperatureRatio value while SimulationStatus is NotStarted or
InProgress.

RequiredEbNo — Minimum Eb/No necessary for link closure
10 (default) | scalar | vector

Minimum energy per bit to noise power spectral density ratio (Eb/No) necessary for link closure in
dB, specified as the name-value pair consisting of 'RequiredEbNo' and a scalar or a vector.

+ Ifyou are adding only one receiver, RequiredEbNo is a scalar.

» Ifyou are adding multiple receivers, RequiredEbNo is a scalar or a vector. When RequiredEbNo
is a scalar, the same RequiredEbNo is assigned to all receivers. When RequiredEbNo is a vector,

receiver

its length must equal the number of receivers and each element of RequiredEbNo is assigned to
the corresponding receiver in the parent.

When the AutoSimulate property of the satellite scenario is false, the RequiredEbNo property
can be modified while SimulationStatus is NotStarted or InProgress.

Output Arguments

rx — Receiver
row vector

Receivers attached to parent, returned as a row vector.

Version History
Introduced in R2021a

PreReceiverLoss argument added to the function

You can now specify the pre-receiver loss in dB using the PreReceiverLoss name value argument.

See Also

Objects
satelliteScenario | satelliteScenarioViewer | Receiver | Transmitter

Functions
play | groundStation | transmitter | link | pattern

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-263

2 Functions

2-264

gimbal

Add gimbal to satellite or ground station

Syntax

gimbal(parent)

gimbal(parent,Name=Value)

gimbal()

Description

gimbal(parent) adds a default Gimbal object to each parent in the parent vector, which can be a
satellite or a ground station. A gimbal can be added to satellites and ground stations, and dynamically
change orientation independent of the parent. Transmitters, receivers, and conical sensors can be
mounted on the gimbals.

gimbal(parent,Name=Value) adds gimbals to parents in parent using additional parameters
specified by optional name-value pairs.

gim=gimbal() returns the added gimbals in the row vector gim.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime =
stopTime =
sampleTime =
sc =

60;

SC =

satelliteScenario with properties:

StartTime:
StopTime:
SampleTime:
AutoSimulate:
Satellites:
GroundStations:
Viewers:
AutoShow:

21-Jun-2021 08:55:
26-Jun-2021 08:55:

60
1

[1x0 matlabshared.
[1x0 matlabshared.
[0x0 matlabshared.

1

datetime(2021,6,21,8,55,0);
startTime + days(5);

o°

satelliteScenario(startTime,stopTime, sampleTime)

00
00

satellitescenario
satellitescenario
satellitescenario

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis =
eccentricity =

0;
inclination = 50;

7878137;

seconds

.Satellite]
.GroundStation]
.Viewer]

gimbal

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 50;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [0.059 1 1]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]
LabelFontSize: 15

Add a ground station, which represents the location to be photographed, to the scenario.

gs = groundStation(sc,Name="Location to Photograph",
Latitude=42.3001,Longitude=-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location to Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0O meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [1 0.4118 0.1608]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]
LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.
g = gimbal(sat)

Gimbal with properties:

2-265

o° o o°
o o o

2 Functions

2-266

Name: Gimbal 3
ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.
pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g,MaxViewAngle=60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis to the conical sensor between the camera and the location to be photographed.
ac = access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]
LineWidth: 3
LineColor: [0.3922 0.8314 0.0745]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

gimbal

s Satellde Scenamd Viewer

Bingran: Eart, Manaw. Earthotar Gadgraphes., el P G5 | Funt Cormrinty
Sy M M B0:00:00 UTC
|

Jun 23 ST Ol B UTC

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

accessIntervals(ac)

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location to Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location to Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location to Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location to Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location to Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location to Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location to Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location to Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location to Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location to Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location to Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location to Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location to Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location to Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location to Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location to Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

2-267

2 Functions

2-268

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667

Visualize the revisit times that the camera photographs of the location.

play(sc);

-
Bl

S 3 OE o . M, Fartfectar Caigrmbuis, sl T G5 (Fus Cinversnty

1STAT UTE
\ 1 e

PECHT 000 e LITC = Jun M M 50:00 08 UTC
|

Input Arguments

parent — Element of scenario to which you add gimbal
scalar | vector

Element of scenario to which you add the gimbal, specified as a scalar or vector of satellites or
ground stations. The number of gimbals specified is determined by the size of the inputs.

+ If parent is a scalar, all gimbals are added to the parent.

+ If parent is a vector and the number of gimbals specified is one, that gimbal is added to each
parent.

+ If parent is a vector and the number of gimbals specified is more than one, the number of
gimbals must equal the number of parents and each parent gets one gimbal.

gimbal

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: '"MountingAngle'=[20;35;10] sets the yaw, pitch, and roll angles of the gimbal to 20,
35, and 10 degrees, respectively.

Note The size of the name-value arguments defines the number of gimbals that you can specify. To
understand how to specify multiple gimbals, refer to these properties.

Name — Gimbal name
"Gimbal 1dx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling the gimbal function. After you call the gimbal function,
this property is read-only.

Gimbal name, specified as a name-value argument consisting of 'Name' and a string scalar, string
vector, character vector, or a cell array of character vectors.

» If you are adding only one gimbal, specify Name as a string scalar or a character vector.

* Ifyou are adding multiple gimbals, specify Name as a string scalar, character vector, string vector,
or a cell array of character vectors. All gimbals that you add as a string scalar or a character
vector are assigned the same specified name. The number of elements in the string vector or cell
array of character vectors must equal the number of gimbals that you are adding. Each gimbal is
assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by the satellite scenario.

Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; O; 0] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

* Ifyou are adding one gimbal, MountingLocation is a three-element vector. The elements specify
the x, y, and z components of the Cartesian coordinates in the body frame of gimbal.

* Ifyou are adding multiple gimbals, MountingLocation can be a three-element vector or a
matrix. When specified as a vector, the same set of mounting locations are assigned to all specified
gimbals. When specified as a matrix, MountinglLocation must contain three rows and the same
number of columns as the gimbals. The columns correspond to the mounting location of each
specified gimbal and the rows correspond to the mounting location coordinates in the parent body
frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountinglLocation property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

2-269

2 Functions

2-270

Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; O; O] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll, in that
order. Yaw, pitch, and roll are positive rotations about the z-axis, intermediate y-axis, and
intermediate x-axis of the parent.

» Ifyou are adding one gimbal, the MountingAngles property is a three-element vector.

* Ifyou are adding multiple gimbals the MountingAngles property can be a three-element vector
or a matrix. When specified as a vector, the same set of mounting angles are assigned to all
specified gimbals. When specified as a matrix, MountingAngles must contain three rows and the
same number of columns as the gimbals. The columns correspond to the mounting angles of each
specified gimbal and the rows correspond to the yaw, pitch, and roll angles in the parent body
frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Example: [0; 30; 60]
Data Types: double

Output Arguments

gim — Gimbal
scalar | vector

Gimbal object attached to parent, returned as either a scalar or a vector.
When the AutoSimulate property of the satellite scenario is false, you can call the gimbal

function only when SimulationStatus is NotStarted. You can use the restart function to reset
SimulationStatus to NotStarted, but doing so erases the simulation data.

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | access | groundStation | satellite | conicalSensor | hide

Topics
“Satellite Scenario Key Concepts”

gimbal

“Satellite Scenario Basics”

2-271

2 Functions

fieldOfView

Package: matlabshared.satellitescenario

Visualize field of view of conical sensor

Syntax

fieldOfView(sensor)
fieldOfView(sensor,Name, Value)
fov = fieldOfView()

Description

fieldOfView(sensor) adds a FieldOfView object to the specified conical sensor, and draws
contours on the Earth. Each contour represents the field of view of a conical sensor in sensor based
on the current state of the scenario.

Locations inside the contour are inside the field of view. The field of view contours are drawn on all
open satellite scenario viewers. The contours are the lines of intersection of the surface of the earth
and the field of view cone. The half angle of the field of view cone equals the MaxViewAngle property
of the conical sensor, and the axis of the cone is the z-axis (or boresight) of the conical sensor. The
vertex of the cone is located at the position of the conical sensor. The cone becomes wider along the
positive body z-axis of the conical sensor.

fieldOfView(sensor,Name,Value) specifies options by using one or more name-value
arguments.

fov = fieldOfView() returns a vector of handles to the added field of view graphic objects.
Specify any input combination from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sC =
satelliteScenario with properties:

StartTime: 21-Jun-2021 08:55:00
StopTime: 26-Jun-2021 08:55:00
SampleTime: 60
AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]

2-272

fieldOfView

GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]

[
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
1

AutoShow:

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;

eccentricity = 0;
inclination = 50;

rightAscension0fAscendingNode

argumentOfPeriapsis = 0;

= 0;

o°

d° o° o° o°

me-

deq
deq
deq

trueAnomaly = 50;
sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0OfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [0.059 1 1]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]
LabelFontSize: 15

Add a ground station, which represents the location to be photographed, to the scenario.

gs = groundStation(sc,Name="Location to Photograph", .
Latitude=42.3001,Longitude=-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location to Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0 meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [1 0.4118 0.1608]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]

2-273

2 Functions

2-274

LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

g = gimbal(sat)
g:
Gimbal with properties:
Name: Gimbal 3
ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor

conicalSensor(g,MaxViewAngle=60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis to the conical sensor between the camera and the location to be photographed.
ac = access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]
LineWidth: 3
LineColor: [0.3922 0.8314 0.0745]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

fieldOfView

s Satellde Scenamd Viewer

Bingran: Eart, Manaw. Earthotar Gadgraphes., el P G5 | Funt Cormrinty
Sy M M B0:00:00 UTC
|

Jun 23 ST Ol B UTC

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

accessIntervals(ac)

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location to Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location to Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location to Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location to Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location to Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location to Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location to Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location to Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location to Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location to Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location to Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location to Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location to Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location to Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location to Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location to Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

2-275

2 Functions

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes)

o°

hours
maxRevisitTime = 12.6667
Visualize the revisit times that the camera photographs of the location.

play(sc);

-

Jues B2 0T A M, Earthtar Caograpions, s T GES (bt Corvwrsty

Sl

RFTAT LTS

B ODE0d UTC Jo 2 M 0000000 UTC
T " i

Input Arguments

sensor — Conical sensor
ConicalSensor object

Conical sensor, specified as a ConicalSensor object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ... ,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'LineWidth', 2.5 sets the line width of the field of view to 2.5 pixels.

2-276

fieldOfView

Viewer — Satellite scenario viewer
vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

NumContourPoints — Number of contour points
40 (default) | integer greater than or equal to 4

Number of contour points used to draw the contour of the field of view, specified as an integer
greater than or equal to 4.

Data Types: double

LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet |string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FFOOOO" —

"green" "g" [0 1 0] "#O0OFFOO"

"blue" "b" [0 0 1] "#O0OOOFF" ——

"cyan" "c" [0 11] "#OOFFFF"

"magenta" |"m" [1 0 1] "#FFOOFF" —

2-277

2 Functions

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"yellow" fy [11 0] "#FFFFOO"

"black" K" [0 0 0] "#000000" E—
"white" w" [111] "#FFFFFF" —
"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7TE2FBE" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Example: 'blue’
Example: [0 0 1]
Example: '#0000FF"

Output Arguments

fov — Field of view of conical sensor
row vector of FieldOfView objects

Field of view of conical sensor, returned as a row vector of Field0fView objects.

Note When the AutoSimulate property is set to false, the SimulationStatus must equal
NotStarted to call the fieldOfView function. Otherwise, use the restart function to reset the
SimulationStatus to NotStarted, which erases the simulation data.

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | conicalSensor | transmitter | receiver

2-278

fieldOfView

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-279

2 Functions

2-280

link
Package: satcom.satellitescenario

Add link analysis objects to transmitter

Syntax

link(assetl,asset2,...,assetN)
Ink = link(,Name=Value)

Ink = link()

Description

link(assetl,asset2,...,assetN) adds Link analysis objects defined by nodes asset1l,
asset2, and so on.

Ink = link(___ ,Name=Value) adds link analysis objects using additional parameters specified as
name-value pairs.

Ink = link() adds link analysis objects and returns the vector link

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations
Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020

SampleTime: 60

AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
Viewers: [0x0 matlabshared.satellitescenario.Viewer]

AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % met
eccentricity = 0;

inclination = 60; % deg!
rightAscensionOfAscendingNode = 0; % deg

link

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly,Name="Satellite");

deg
deg

o o°

Add gimbals to the satellite. These gimbals enable the satellite receiver antenna to steer to the first
ground station, and its transmitter antenna to steer to the second ground station.

gimbalrxSat
gimbaltxSat

gimbal(sat);
gimbal(sat);

Add a receiver to the first gimbal of the satellite.

gainToNoiseTemperatureRatio = 5;

systemLoss = 3;

rxSat = receiver(gimbalrxSat,Name="Satellite Receiver",GainToNoiseTemperatureRatio= ...
gainToNoiseTemperatureRatio,SystemLoss=systemLoss)

o® o°
o o

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 4
MountingLocation: [0; O; O] meters
MountingAngles: [0; O; O] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels
PreReceiverLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Add a transmitter to the second gimbal of the satellite.

frequency = 27e9;

power = 20;

bitRate = 20;

systemLoss = 3;

txSat = transmitter(gimbaltxSat,Name="Satellite Transmitter",Frequency=frequency,
power=power,BitRate=bitRate,SystemLoss=systemLoss)

Hz
dBW
Mbps

o® o° o° o°

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 5
MountingLocation: [0; 0; 0] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;

2-281

2 Functions

2-282

gaussianAntenna(txSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);
gaussianAntenna(rxSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,Name="Ground Station 1");

latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude, longitude,Name="Ground Station 2");

Point gimbals of the satellite towards the two ground stations for the simulation duration.

pointAt(gimbaltxSat,gs2);
pointAt(gimbalrxSat,gsl);

Add gimbals to the ground stations. These gimbals enable the ground station antennas to steer
towards the satellite.

gimbalgsl
gimbalgs2

gimbal(gsl);
gimbal(gs2);

Add a transmitter to ground station gs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalgsl,Name="Ground Station 1 Transmitter",Frequency=frequency,
Power=power,BitRate=bitRate);

Add a receiver to ground station gs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalgs2,Name="Ground Station 2 Receiver",RequiredEbNo=requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,DishDiameter=dishDiameter);
gaussianAntenna(rxGs2,DishDiameter=dishDiameter);

Point gimbals of the ground stations towards the satellite for the simulation duration.

pointAt(gimbalgsl,sat);
pointAt(gimbalgs2,sat);

Add link analysis to transmitter txGs1.

lnk = link(txGs1l, rxSat,txSat, rxGs2)

lnk =
Link with properties:

Sequence: [10 4 5 11]
LineWidth: 2
LineColor: [0.3922 0.8314 0.0745]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(1lnk)

o® o o°

=Q T

=

o

link

ans=4x8 table

Source Target IntervalNumber Star
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov-20
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov-20
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov-20
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov-20

Visualize the link by using the Satellite Scenario Viewer.

play(sc);

.ty
20 12 0008 UTC Mo 25 2000 180080 UTC Mo 36 00
| |

Input Arguments

assetl,asset2,...,assetN — Adds link analysis objects
scalar | vector

Adds link analysis objects defined by nodes asset1, specified as a scalar or vector of transmitters,
asset?2, and so on, specified as a scalar or a vector of transmitters or receivers.

+ Ifthe asset in a given node is scalar, every link analysis object uses the same asset for that node
position.

» Ifthe asset in a given node is vector, the asset length must equal the number of link analysis
objects.

2-283

2 Functions

2-284

Each link analysis object uses the corresponding element of the asset vector for that node location.
The IDs of ASSET1, ASSET2, ASSET3, and so on, specify the Sequence of the link. These objects must
belong to the same satelliteScenario object. Each link analysis object is added to the Link
property of the corresponding transmitter in ASSET1.

Name-Value Pair Arguments
Specify optional pairs of arguments as Namel=Valuel, ... ,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: LineWidth=2.5 sets the line width of the field of view to 2.5 pixels.

Viewer — Satellite scenario viewer

vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer

objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

Output Arguments

1nk — Link analysis
scalar | row vector

Link analysis object between input objects, returned as either a scalar or a row vector.

Note When AutoSimulate of the satellite scenario is false, you can call link only when the
SimulationStatus is NotStarted. Otherwise, you must call the restart function to erase the
simulation data and reset the SimulationStatus to NotStarted.

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
transmitter | receiver | sigstrength

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

gaussianAntenna

gaussianAntenna

Package: satcom.satellitescenario

Add Gaussian antennas

Syntax

gaussianAntenna(trx)
gaussianAntenna(trx,Name=Value)
ant = gaussianAntenna()
Description

gaussianAntenna(trx) adds a Gaussian antenna to each transmitter or receiver in the vector t rx
using default parameters. The existing antennas in the transmitters or receivers are overwritten. For
more information about antenna gain, see “Algorithm” on page 2-290.

gaussianAntenna(trx,Name=Value) adds a Gaussian antenna to each transmitter or receiver in
the vector trx and specifies options using name-value arguments. For example, DishDiameter=1.7
defines the diameter of the antenna dish.

ant = gaussianAntenna() adds a Gaussian antenna to the transmitters or receivers and
returns them in the vector ant.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020

SampleTime: 60

AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]

Viewers: [0x0 matlabshared.satellitescenario.Viewer]
AutoShow: 1

Add a satellite to the scenario.

2-285

2 Functions

2-286

semiMajorAxis = 10000000; %
eccentricity = 0;
inclination = 60; %
rightAscension0fAscendingNode = 0; %
argumentOfPeriapsis = 0; %
trueAnomaly = 0; %
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly,Name="Satellite");
Add gimbals to the satellite. These gimbals enable the satellite receiver antenna to steer to the first
ground station, and its transmitter antenna to steer to the second ground station.
gimbalrxSat = gimbal(sat);
gimbaltxSat = gimbal(sat);
Add a receiver to the first gimbal of the satellite.
gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(gimbalrxSat,Name="Satellite Receiver",GainToNoiseTemperatureRatio= ...
gainToNoiseTemperatureRatio,SystemLoss=systemLoss)
rxSat =
Receiver with properties:
Name: Satellite Receiver
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; O; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
PreReceiverLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels
Add a transmitter to the second gimbal of the satellite.
frequency = 27e9; % Hz
power = 20; % dBW
bitRate = 20; % Mbps
systemLoss = 3; % dB

txSat = transmitter(gimbaltxSat,Name="Satellite Transmitter",Frequency=frequency,
power=power,BitRate=bitRate,SystemLoss=systemlLoss)

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 5
MountingLocation: [0; 0; 0] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

mete

deg
deg
deg
deg

gaussianAntenna

Specify the antenna specifications of the repeater.

dishDiameter = 0.5;

apertureEfficiency = 0.5;
gaussianAntenna(txSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);
gaussianAntenna(rxSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,Name="Ground Station 1");

latitude = 52.2294963; %
longitude = 0.1487094; %
gs2 = groundStation(sc,latitude, longitude,Name="Ground Station 2");

egrees
egrees

d
d
Point gimbals of the satellite towards the two ground stations for the simulation duration.

pointAt(gimbaltxSat,gs2);
pointAt(gimbalrxSat,gsl);

Add gimbals to the ground stations. These gimbals enable the ground station antennas to steer
towards the satellite.

gimbalgsl
gimbalgs2

gimbal(gsl);
gimbal(gs2);

Add a transmitter to ground station gs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalgsl,Name="Ground Station 1 Transmitter",Frequency=frequency,
Power=power,BitRate=bitRate);

Add a receiver to ground station gs2.

requiredEbNo = 14;
rxGs2 = receiver(gimbalgs2,Name="Ground Station 2 Receiver",RequiredEbNo=requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,DishDiameter=dishDiameter);
gaussianAntenna(rxGs2,DishDiameter=dishDiameter);

Point gimbals of the ground stations towards the satellite for the simulation duration.

pointAt(gimbalgsl,sat);
pointAt(gimbalgs2,sat);

Add link analysis to transmitter txGs1.
lnk = link(txGs1, rxSat,txSat, rxGs2)

lnk =
Link with properties:

Sequence: [10 4 5 11]

LineWidth: 2
LineColor: [0.3922 0.8314 0.0745]

2-287

o® o o°

=Q T

meters

=

e,

2 Functions

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(1lnk)
ans=4x8 table
Source Target IntervalNumber Star
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov-20:

Visualize the link by using the Satellite Scenario Viewer.

play(sc);

Somare Ean, Mass Eartfeter opograpturs, sl Pa L5 L Comemssty

000008 UTC ﬂpuv}i;"ﬂ]‘ﬂ 0 S 00 LITC Now 35 2020 17 0000 UTC Mo 25 7000 1800 03 UTC Mo 26 000
Al | | |

Input Arguments

trx — Transmitter or receiver
scalar | vector

Transmitter or receiver object to which the Gaussian antenna is added, specified as either a scalar or
a vector.

2-288

gaussianAntenna

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'DishDiameter'=1.7 sets the dish diameter of the antenna to 1.7 meters upon creation.

DishDiameter — Diameter of the antenna dish
1 (default) | scalar | vector

This property is read-only.

You can set this property only when calling gaussianAntenna. After you call gaussianAntenna, this
property is read-only.

Diameter of the Gaussian antenna dish in meters, specified as a scalar or a vector.

« IfDishDiameter is a scalar, the same value is assigned to all transmitters or receivers in trx.

+ IfDishDiameter is a vector, the length of the vector must equal that of trx, and each
transmitter or receiver in trx is assigned the corresponding element in the DishDiameter
vector.

ApertureEfficiency — Aperture efficiency of Gaussian antenna
0.65 (default) | scalar in the range (0,1] | vector

This property is read-only.

You can set this property only when calling gaussianAntenna. After you call gaussianAntenna, this
property is read-only.

Aperture efficiency of the Gaussian antenna, specified as a scalar in the range (0,1].

* If ApertureEfficiency is a scalar, the same value is assigned to all transmitters or receivers in
trx.

+ If ApertureEfficiency is a vector, the length of the vector must equal that of trx, and each
transmitter or receiver in trx is assigned the corresponding element in the
ApertureEfficiency vector.

Output Arguments

ant — Gaussian antenna
scalar | vector

Gaussian antenna object added to the specified transmitter or receiver, returned as either a scalar or
a vector.

Note When the AutoSimulate property of satellite scenario is false, you can call the
gaussianAntenna function only when SimulationStatus is NotStarted. You can use the
restart function to reset the SimulationStatus to NotStarted, but doing so erases the
simulation data.

2-289

2 Functions

Algorithms

The Gaussian antenna approximates a parabolic reflector using a Gaussian curve as
gain(theta) = boresightGain*exp(-(4*log(2)*((theta/3dBbeamwidth) " 2)))

Note that log(2) is a natural log, where:

* boresightGain = rho_a*((pi*d/lambda)”2)

* 3dBbeamwidth = 70*lambda/d
(in degrees)

* theta is the angle between the direction in which the gain is computed and the boresight direction
is in degrees.

* rho_a is the aperture efficiency.
* d is the dish diameter in meters.
* lambda is the wavelength in meters.

The gain in dB is
gain_dB(theta) = 10*log10(gain(theta)

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario

Functions
hide | show | play | satellite | access | groundStation | receiver | transmitter

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-290

groundTrack

groundTrack

Package: matlabshared.satellitescenario

Add ground track object to satellite in scenario

Syntax

groundTrack(sat)
groundTrack(_ ,Name=Value)

Description

groundTrack(sat) adds ground track visualization for each satellite in sat based on their current
positions. The ground track begins at the scenario StartTime, and ends at the StopTime. The spacing
between samples that make up the ground track visualization is determined by the scenario
SampleTime. If no viewer is open, a new viewer is launched, and the ground track is displayed. If a
viewer is already open, the ground track is added to that viewer. By default, ground tracks will be

displayed in 2-D.

groundTrack(,Name=Value) adds a groundTrack object by using one or more name-value

pairs. Enclose each property name in quotes.

Examples

Add Ground Track to Satellite in Geosynchronous Orbit

Create a satellite scenario object.

startTime = datetime(2020,5,10);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Calculate the semimajor axis of the geosynchronous satellite.

earthAngularVelocity = 0.0000729211585530;
orbitalPeriod = 2*pi/earthAngularVelocity;
earthStandardGravitationalParameter = 398600.4418e9;

semiMajorAxis = (earthStandardGravitationalParameter*((orbitalPeriod/(2*pi))~2))"~(1/3);

Define the remaining orbital elements of the geosynchronous satellite.

eccentricity = 0;

inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

Add the geosynchronous satellite to the scenario.

2-291

%
%
%

rad/s
seconds
m~3/s"2

2 Functions

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...
argumentOfPeriapsis, trueAnomaly, "OrbitPropagator", "two-body-keplerian", "Name", "GEO Sat")

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

4+ Satellte Scenans Viewer - o b4

-
Sl

Ry 10 200

o QOO LT

S Dan, Maxr, [-'M Ceographas, and T GE User Community
0B UTC My 12 2030 88 00000 UTC Ny 148 2000 08 85000 LT
\ «fuf» JF _))

Add a ground track of the satellite to the visualization and adjust how much of the future and history
of the ground track to display.

leadTime = 2*24*3600; % seconds
trailTime = leadTime;
gt = groundTrack(sat,"LeadTime", leadTime,"TrailTime",trailTime)

gt =
GroundTrack with properties:

LeadTime: 172800
TrailTime: 172800
LineWidth: 1

LeadLineColor: [1 1 0.0670]
TrailLineColor: [1 1 0.0670]
VisibilityMode: 'inherit'

Visualize the satellite movement and its trace on the ground. The satellite covers the area around
Japan during one half of the day and Australia during the other half.

play(sc);

2-292

groundTrack

& Satellae Scenarmd Viewer = o

. Ceographes, and T GE User Commanity
FMM!_ITE oy By 13 2050 88 Gd008 UTC Ry 14 000 B8 S04 LT
i it | |

Input Arguments

sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: LeadTime=3600 sets the lead time of the ground track to 3600 seconds upon creation.
Viewer — Satellite scenario viewer

vector of satelliteScenarioViewer objects (default) | scalar satelliteScenarioViewer object
| array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects. If the AutoSimulate property of the scenario is false, adding a satellite to the scenario
disables any previously available timeline and playback widgets.

LeadTime — Period of ground track to be visualized

StartTime to StopTime (default) | positive scalar

2-293

2 Functions

Period of the ground track to be visualized in the satellite scenario viewer, specified as 'LeadTime’
and a positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as 'TrailTime' and a
positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as 'LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet |string scalar of color name | character
vector of color name

Color of the future ground track line, specified as 'LeadLineColor' and an RGB triplet, a
hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FFOO00" I

"green" "g" [0 1 0] "#OOFFOO"

"blue" b [0 0 1] "#OOOOFF" I

"cyan" "c" [0 1 1] "#OOFFFF"

"magenta" "m" [1 0 1] "#FFOOFF" I

"yellow" "y [11 0] "#FFFFOO"

"black" k" [0 0 O] "#000000" I

"white" w" [11 1] "#FFFFFF" —

"none" Not Not applicable Not applicable No color

applicable

2-294

groundTrack

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4ADBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Example: 'blue’

Example: [0

0 1]

Example: '#0000FF"'

TraillLineColor — Color of ground track line history
[1 0.5 0] (default) | RGB triplet | RGB triplet |string scalar of color name | character
vector of color name

Color of the ground track line history, specified as 'TrailLineColor' and an RGB triplet, a
hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "r [1 0 0] "#FF0000" —

"green" "g" [0 1 0] "#0OFF00"

"blue" "b" [0 0 1] "#OOOOFF" —

"cyan" "c" [0 1 1] "#OOFFFF"

"magenta" "m" [1 0 1] "#FFOOFF" []

"yellow" Ty [1 1 0] "#FFFFOO"

"black" "K" [0 0 O] "#000000" —

"white" "w" [11 1] "#FFFFFF" —

2-295

2 Functions

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code
"none" Not Not applicable Not applicable No color
applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#TE2FBE" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Example: 'blue’
Example: [0 0 1]
Example: '#0000FF'

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | groundStation | access | hide | satellite

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

2-296

pattern

pattern

Package: satcom.satellitescenario

Plot 3-D radiation pattern of antenna

Syntax

pat = pattern(tx)

pat = pattern(rx,freq)
pat = pattern(___ ,Name,Value)
Description

pat = pattern(tx) plots the 3-D radiation pattern of the antenna for each transmitter in vector
tx. The signal gain value (in dBi) in a particular direction determines the color of the pattern. The
function scales the pattern on the plot according to the Size name-value argument. The function
plots the pattern for the transmitter frequency as specified by the Frequency property of tx.

pat = pattern(rx, freq) plots the 3-D radiation pattern of the antenna for each receiver in
vector, rx with frequency freq.

pat = pattern(,Name, Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example,
"ColorMap', 'jet' specifies the jet colormap for coloring the pattern plot.

Examples

Visualize Radiation Pattern of Transmitter Antenna on Satellite

Set up the satellite scenario.
startTime = datetime(2021,2,12,13,30,0);
stopTime = startTime + hours(5);

sampleTime = 60; %seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);

gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat, "Frequency",3e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

2-297

2 Functions

b Satellte SEenarnd Viewer - o

e G Unew Commanity
Feb 13 2031 160668 UTC Febs 13 2009 15.06:060 UTC
|

Plot the radiation pattern of the transmitter antenna.

pat = pattern(tx);

2-298

pattern

& Satellne Scenand Viewer _ o

Soroe: D, Maxw, Larfhets Ceographaes, and 25 U Cormemenaty
Fob 13 HCH 1420880 UTC Feb 13 2631 1606808 UTC Febs 13 2021 15.006.08 UTC
I ¥ | |

Point the satellite at the ground station. The pattern rotates to reflect the new orientation of the
antenna.

pointAt(sat,gs);

2-299

2 Functions

Souroe D, Maxw, Larfhets CGeographes, and T GE User Commanity
Fnh 13 TG 1488l LTC Feb 13 2631 1606808 UTC Febs 13 2021 150808 UTC
F | |

Increase the visual size of the radiation pattern.

pat.Size = 3000000;
pat.Colormap = "parula";

2-300

pattern

Soroe: [, Maxw, Carfhete CGeographes, and T G Uses Commanity
Eob 12 HCH 140880 UTC Feb 13 2631 1606668 UTC Febs 13 2021 15.06:08 UTC
A | |

4 11 »

Visualize Radiation Pattern of Receiver Antenna on Satellite
Set up the satellite scenario.

sc = satelliteScenario;

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);

gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat, "Frequency",1e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

2-301

2 Functions

2-302

- Satellde Scenarnd Viewer

Ground station 2

Souoe: L, Maxow, Larfhete Ceographes, and T Community
| p'.‘ 6:0088 UTC 3 MY 170080 UTC

Plot the radiation pattern of the receiver antenna.

freq = 30e9;
pat = pattern(rx,freq);

pattern

4 Satellfe Scenand Viewer - o =

H Gmound station 2

Souoe: L, Maxow, Larfhets CGeographes, and T Fusw Cormmunity
KEY 160088 UTC DOER 1700080 UTC
F Ll |

Increase the visual size and specify the transparency of the radiation pattern.

pat.Size = 3000000;
pat.Colormap = 'autumn';

2-303

2 Functions

i Satellte Scenamd Viewer - o

Ground station 2

by 30 K2 o [, Maxw, | srfhete Caograghars, snd e ©

105008 LTS
4 11 »

KX 150008 UTC F, = C Ry 31 H22 158000 LUTC

Input Arguments

tx — Transmitter
scalar | vector

Transmitter object, specified as either a scalar or vector.

rx — Receiver
scalar | vector

Receiver object, specified as either a scalar or vector.

freq — Frequency to calculate radiation pattern
scalar | vector

Frequency to calculate radiation pattern, specified as a scalar or a vector.

» If freqis scalar, its value is applied to the pattern of all receivers in rx.
+ If freqis vector, its length must equal to that of rx.

Each element in freq corresponds to the pattern of the antenna of the receiver in rx.

Data Types: double

2-304

pattern

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ... ,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Size',1000 sets the size of the radiation pattern plot to 1,000 meters.

Size — Size of radiation pattern plot
1000000 (default) | numeric scalar

Size of the radiation pattern plot, specified as a numeric scalar in meters. This value represents the
distance between the antenna position and the point on the plot with the highest gain.

Data Types: double

Colormap — Colormap for coloring pattern plot
'jet' (default) | predefined colormap name | M-by-3 matrix

Colormap for coloring the pattern plot, specified as a predefined colormap name or an M-by-3 matrix
of red, green, blue (RGB) triplets that define M individual colors. For more information on the
colormap names, see “map”.

Data Types: double | char | string

Transparency — Transparency of the pattern plot
0.4 (default) | scalar in the range [0, 1]

Transparency of the pattern plot, specified as a scalar in the range [0, 1]. A value of 0 means the plot
is completely transparent, and a value of 1 means the plot is opaque.

Data Types: double

Resolution — Resolution of 3-D pattern
"high' (default) | ‘'medium' | 'low"

Resolution of the 3-D pattern, specified as 'low', 'medium', or 'high'. Use this argument to
control the visual quality of the pattern and time the function takes to plot the pattern. ' Llow'
corresponds to the fastest and least-detailed pattern.

Data Types: char | string

Viewer — Satellite Scenario Viewer to visualize satellite
row vector (default) | scalar | matrix

Satellite Scenario Viewer to visualize the satellite, specified as a scalar, row vector, or matrix of
satelliteScenarioViewer objects that are associated with the satellite scenario.

Output Arguments

pat — Radiation pattern visualization for transmitter or receiver
scalar | vector

Radiation pattern visualization for transmitter or receiver object, returned as either a scalar or
vector.

2-305

2 Functions

Version History
Introduced in R2021b

See Also

Objects
Receiver | Transmitter | satelliteScenarioViewer | satelliteScenario

Functions
show | hide | receiver | transmitter

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-306

advance

advance

Move simulation forward by one sample time

Syntax

isrunning = advance(sc)

Description

isrunning = advance(sc) moves the simulation forward by the amount of time specified by the
SampleTime property of the scenario sc.

Examples

Manual Simulation of Satellite Scenario

Create a satellite scenario object and set the AutoSimulate property to false to enable manual
simulation of the satellite scenario.

startTime = datetime(2022,1,12);

stopTime = startTime + days(0.5);

sampleTime = 60; % Seconds
sc = satelliteScenario('AutoSimulate', false);

Add a GPS satellite constellation to the scenario.

sat = satellite(sc, "gpsAlmanac.txt");

Simulate the scenario using the advance function.

while advance(sc)
end

Obtain the satellite position histories.

p = states(sat);

AutoSimulate is false, so restart the scenario before adding a ground station.
restart(sc);

Add a ground station to the scenario.

gs = groundStation(sc);

Add access analysis between each satellite and ground station.

ac = access(sat,gs);

Simulate the scenario and determine the access intervals.

2-307

2 Functions

while advance(sc)
end
intvlsl = accessIntervals(ac)

intvls1=35x8 table

Source Target IntervalNumber StartTime EndTime
"PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05::
"PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:
"PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21::
"PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:
"PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00::
"PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:
"PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:
"PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:
"PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:;
"PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03::
"PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:
"PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:
"PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 0O1:!
"PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04::
"PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:
1 12-Jan-2020 00:03:56 12-Jan-2020 02:!

"PRN:13" "Ground station 32"

Visualize the simulation results.

v = satelliteScenarioViewer(sc, 'ShowDetails', false);
play(sc);

2-308

advance

& Satellne Scenarmd Viewer - o

Siouroe: i, Maxow, Larfhete Ceographes, snd T GE Uses Commanity
320 B0 UTC dan 1."':‘|'.|:'|?|FMM uTe dan 13 M0 B4 00 08 UTC
' |

Verify that the access intervals are the same when you set the AutoSimulate property to true.

sc.AutoSimulate = true;
intvls2 = accessIntervals(ac)

intvls2=35x8 table

Source Target IntervalNumber StartTime EndTime
"PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05:
"PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:
"PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21:.
"PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:
"PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00::
"PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:
"PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:
"PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:
"PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:
"PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03:
"PRN:O" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:
"PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:
"PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:!
"PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04:.
"PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:

1 12-Jan-2020 00:03:56 12-Jan-2020 02:!

“PRN:13" “Ground station 32"

Visualize the scenario.

2-309

2 Functions

play(sc);

4 Satellte Scenams Viewer - o

- »
£ .
s 12 20 Sourme [, Mac, Larthete Ceographes, snd S G U Commnty

o A0 8 LT

s
Y20 0H00 UTC dan 17 020 003 4 LITC Jan 13 20ChE 0000 08 UTC
S0 L L [:

Input Arguments

sc — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object. The argument applies only if the
AutoSimulate property of the sc object is false.

Output Arguments

isrunning — Running status of satellite scenario simulation
trueorl| falseor0

Running status of the satellite scenario simulation, returned as a logical 1 (true) or 0 (false). The
isrunning value is true until the scenario reaches the specified StopTime value.

Version History
Introduced in R2022a

2-310

advance

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | satellite | groundStation | restart

2-311

2 Functions

2-312

restart

Restart simulation from beginning

Syntax

restart(sc)

Description

restart(sc) resets the satellite scenario sc to the initial start time.

Examples

Manual Simulation of Satellite Scenario

Create a satellite scenario object and set the AutoSimulate property to false to enable manual
simulation of the satellite scenario.

startTime = datetime(2022,1,12);

stopTime = startTime + days(0.5);

sampleTime = 60; % Seconds
sc = satelliteScenario('AutoSimulate', false);

Add a GPS satellite constellation to the scenario.

sat = satellite(sc,"gpsAlmanac.txt");

Simulate the scenario using the advance function.

while advance(sc)
end

Obtain the satellite position histories.

p = states(sat);

AutoSimulate is false, so restart the scenario before adding a ground station.
restart(sc);

Add a ground station to the scenario.

gs = groundStation(sc);

Add access analysis between each satellite and ground station.

ac = access(sat,gs);

Simulate the scenario and determine the access intervals.

restart

while advance(sc)

end

intvlsl = accessIntervals(ac)

intvls1=35x8 table

Source Target IntervalNumber StartTime EndTime
"PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05::
"PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:
"PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21::
"PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:
"PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00::
"PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:
"PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:
"PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:
"PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:;
"PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03::
"PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:
"PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:
"PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 0O1:!
"PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04::
"PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:
13" "Ground station 32" 1 12-Jan-2020 00:03:56 12-Jan-2020 02:!

“PRN:

Visualize the simulation results.

v = satelliteScenarioViewer(sc, 'ShowDetails', false);

play(sc);

2-313

2 Functions

& Satellne Scenarmd Viewer

Siouroe: i, Maxow, Larfhete Ceographes, snd T GE Uses Commanity
dan 13 HiM #i o 04 UTEC

320 B0 UTC

dan 13 M0 B4 00 08 UTC
|

Verify that the access intervals are the same when you set the AutoSimulate property to true.

sc.AutoSimulate =

true;

intvls2 = accessIntervals(ac)

intvls2=35x8 table
Source

"PRN:
"PRN:
13"
"PRN:

"PRN

"PRN
"PRN
"PRN
"PRN

"PRN
"PRN
"PRN

"PRN

1n
o

3n

14"
14"
:5"
16"
“PRN:
“PRN:

7
gn

19"
19"
;10"
"PRN:
"PRN:
113"

11"
1m

Target

"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground
"Ground

Visualize the scenario.

2-314

station
station
station
station
station
station
station
station
station
station
station
station
station
station
station
station

32"
32"
32"
32"
32"
32"
32"
32"
32"
32"
32"
32"
32"
32"
32"
32"

IntervalNumber

HFRHERNRRRRENRENRRR

StartTime

11-Jan-2020
12-Jan-2020
11-Jan-2020
12-Jan-2020
11-Jan-2020
12-Jan-2020
12-Jan-2020
12-Jan-2020
11-Jan-2020
11-Jan-2020
11-Jan-2020
12-Jan-2020
12-Jan-2020
11-Jan-2020
12-Jan-2020
12-Jan-2020

23:
04:
19:
01:
19:
04:
05:
02:

21

20:
19:
05:
00:

22

04:
00:

20:
03:
50:
143

52

50:
54:
52:
43:
:09:
33:
50:
08:
32:
:15:
32:
03:

25
16
06

06
02
03
29
52
36
06
32
56
09
16
56

12-
12-
11-
12-
12-
12-
12-
12-
12-
12-
12-
12-
12-
12-
12-
12-

EndTime

Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020
Jan-2020

05:°

07:

21:.

06:

00:

07:
07:
07:

03:.
03::

00:
07:

01:!
04:.

07:

02:!

restart

play(sc);

r Satellne Ssenarmd Vieaer = [}

-
S0
;;;:;"m tonarre [, Maxr, Larthatsr Cieograghes, and e G (Pus Community .

LA

Y3000 UTC Jm1J:‘ﬂHMMuLITE Jan 13 20Ch 0000 88 UTC
| |

Input Arguments

sc — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object. The argument applies only if the
AutoSimulate property of the sc object is false.

The timeline and playback widgets on the open satellite scenario viewers that were previously made
available after calling the play function become unavailable for interaction.

Version History
Introduced in R2022a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | satellite | groundStation | advance

2-315

2 Functions

2-316

sigstrength

Package: satcom.satellitescenario

Calculate received signal strength at last node of link

Syntax

PISO = sigstrength(1lnk)

[PISO,PRI] = sigstrength(lnk)

[1 = sigstrength(lnk,timeln)
[PISO,PRI,timeOut] = sigstrength()

Description

PISO = sigstrength(1lnk) returns a history matrix of received isotropic power in dBW at the final
node in each link defined in the vector, Lnk. The rows of the matrix correspond to the link object in
1nk and the columns correspond to the time sample.

[PISO,PRI] = sigstrength(lnk) returns received isotropic power, PIS0, and history matrix of
the power at receiver input, PRI, in dBW at the final node in each link defined in the vector, Lnk. The
rows of the matrix correspond to the link object in 1nk and the columns correspond to the time
sample.

[] = sigstrength(lnk,timeIn) returns one or both of the outputs as column vectors at the
specified datetime timeIn. The elements in the vectors correspond to the links in lnk. If no time
zone is specified in timeIn, the time zone is assumed to be Coordinated Universal Time (UTC).

[PISO,PRI,timeOut] = sigstrength() returns the received isotropic power, power at the
receiver input, and the corresponding datetime in UTC.

Examples

Obtain Signal Strength of Satellite Link

This example computes the history of received isotropic power, power at receiver input, and the
corresponding time samples of the satellite link.

Create a satellite scenario object.

startTime = datetime(2020,10,13,10,42,0);

stopTime = datetime(2020,10,13,10,50,0);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;
inclination = 0;
rightAscensionOfAscendingNode = 0;

egrees

% d
% degrees

sigstrength

argumentOfPeriapsis = 0; %

trueAnomaly = 210; %

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscensionOfAscendingNode,argumentOfPeriapsis, trueAnomaly) ;

egrees
egrees

d
d
Add a transmitter to the satellite.

tx = transmitter(sat);

Add a ground station to the scenario.

latitude = 0; %

longitude = 30; %
gs = groundStation(sc,latitude,longitude);

egrees

d
degrees

Add a receiver to the ground station.

rx = receiver(gs,MountingAngles=[0; 180; 0]);

Add a link analysis to the transmitter.

lnk = link(tx, rx);

Obtain the history of received isotropic power, power at receriver input, and time samples.
[PISO,PRI,timeOut] = sigstrength(lnk)

PISO = 1x9
103 x

-0.2770 -0.1509 -0.1461 -0.2630 -0.4950 -0.8299 -1.2512 -1.7398

PRI = 1x9
103 x

-0.5934 -0.1562 -0.1397 -0.5446 -1.3544 -2.5375 -4.0507 -Inf

timeOut = 1x9 datetime
Columns 1 through 3

13-0ct-2020 10:42:00 13-0ct-2020 10:43:00 13-0ct-2020 10:44:00
Columns 4 through 6

13-0ct-2020 10:45:00 13-0ct-2020 10:46:00 13-0ct-2020 10:47:00
Columns 7 through 9

13-0ct-2020 10:48:00 13-0ct-2020 10:49:00 13-0ct-2020 10:50:00

Obtain Signal Strength of Satellite Link at Specified Time

-2.2756

-Inf

This example computes the received isotropic power and the power at receiver input of the satellite

link at a specified time.

2-317

2 Functions

2-318

Create a satellite scenario object.

startTime = datetime(2021,10,13,10,5,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite to the scenario.

semiMajorAxis = 10000000; % meters
eccentricity = 0;

inclination = 0; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 210; % degrees

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscensionOfAscendingNode,argumentOfPeriapsis, trueAnomaly);

Add a receiver to the satellite.

rx = receiver(sat);

Add a ground station to the scenario.

latitude = 0; % degrees
longitude = 30; % degrees
gs = groundStation(sc,latitude,longitude);

Add a transmitter to the ground station.

tx = transmitter(gs,MountingAngles=[0; 180; 01]);
Add a link analysis to the transmitter.

Ink = link(tx, rx);

Obtain the received isotropic power and power at receriver input on 13 October 2021 at 10:06 AM
UTC.

time = datetime(2021,10,13,10,6,0);
[PISO,PRI] = sigstrength(lnk,time)

PISO = -2.9142e+03

PRI = -3.9716e+03

Input Arguments

1nk — Link analysis object
vector

Link analysis object, specified as a vector.

timeIn — Time at which output is calculated
datetime scalar

sigstrength

Time at which the output is calculated, specified as a datetime scalar. If no time zone is specified in
timelIn, the time zone is assumed to be UTC.

Output Arguments

PISO — Received isotropic power
matrix

Received isotropic power in dBW, returned as a matrix. This output is the power level just before the
receiver antenna, after accounting for the transmitter effective isotropic radiated power and path
loss. The rows of the matrix correspond to the link object in Lnk and the columns correspond to the
time sample.

When the AutoSimulate property of the satellite scenario is true, the received isotropic power
history from StartTime to StopTime is returned. Otherwise, the received isotropic power history
from StartTime to SimulationTime is returned.

PRI — Power at receiver input
matrix

Power at receiver input in dBW, returned as a matrix. This output is the power level after adding the
receiver antenna gain in the direction of the received signal to PISO and subtracting
PreReceiverlLoss of the receiver. The rows of the matrix correspond to the link object in 1nk and
the columns correspond to the time sample.

When the AutoSimulate property of the satellite scenario is true, the history of power at the
receiver input from StartTime to StopTime is returned. Otherwise, the history of power at the
receiver input from StartTime to SimulationTime is returned.

timeOut — Time samples of received isotropic power and power at receiver input
datetime scalar | datetime row vector

Time samples of received isotropic power, PIS0, and power at receiver input, PRI, returned as a
datetime scalar. If time histories of PISO and PRI are returned, timeQut is a datetime row vector.

Version History
Introduced in R2022b

See Also

Objects
satelliteScenario

Functions
link | ebno

Topics
“Satellite Scenario Key Concepts”

2-319

Objects

3 Objects

3-2

ccsdsTCConfig

CCSDS TC configuration parameters

Description
The ccsdsTCConfig object creates a configuration object for Consultative Committee for Space

Data Systems (CCSDS) Telecommand (TC) using default and specified values. ccsdsTCConfig object
is configurable by using applicable “Properties” on page 3-2.

Creation

Syntax

cfg
cfg

ccsdsTCConfig
ccsdsTCConfig(Name, Value)

Description
cfg = ccsdsTCConfig creates a CCSDS TC configuration object using default properties.

cfg = ccsdsTCConfig(Name,Value) sets “Properties” on page 3-2 using one or more name-
value pairs. Enclose each property name in quotes. For example,

ccsdsTCConfig('DataFormat', 'CLTU', 'Modulation', 'BPSK') configures the CSSDS TC
configuration object with a communications link transmission unit data format and binary phase shift
keying (BPSK) modulation scheme.

Properties

DataFormat — Data formats used by PLOPs
"CLTU" (default) | "acquisition sequence" | "idle sequence"

Data formats used by physical layer operation procedures (PLOPs), specified as one of these options.

e "CLTU" — Communications link transmission unit (CLTU)
* "acquisition sequence"
+ "idle sequence"

Data Types: char | string

ChannelCoding — Forward error correction coding
"BCH" (default) | "LDPC"

Forward error correction coding, specified as one of these options.

* "BCH" — Bose Chaudhuri Hocquenghem (BCH)
* "LDPC" — Low-density parity-check (LDPC)

ccsdsTCConfig

Dependencies

To enable this property, set the DataFormat property to "CLTU".
Data Types: char | string

LDPCCodewordLength — LDPC codeword length
128 (default) | 512

LDPC codeword length, specified as 128 or 512.

Dependencies

To enable this property, set the ChannelCoding property to "LDPC".
Data Types: double

HasRandomizer — Flag to indicate randomization
1 or true (default) | @ or false

Flag to indicate randomization on the bits in CLTU and on the fill data added prior to randomization,
specified as a logical value of 1 (true) or 0 (false). To indicate the presence of a randomizer in the
waveform, set this value to 1 (true).

Dependencies

To enable this property, set the ChannelCoding property to "BCH".
Data Types: logical

HasTailSequence — Flag to indicate tail sequence in CLTU
1 or true (default) | © or false

Flag to indicate the tail sequence in CLTU, specified as a logical value of 1 (true) or 0 (false). To
indicate the presence of the tail sequence to delimit the end of a CLTU, set this value to 1 (true).

Dependencies

To enable this property, set the ChannelCoding property to "LDPC" and the LDPCCodewordLength
property to 128.

Data Types: Logical

Modulation — Modulation scheme
"PCM/PSK/PM" (default) | "PCM/PM/biphase-L" | "BPSK"

Modulation scheme used to generate the CCSDS TC waveform, in the form of baseband in-phase
quadrature (IQ) samples, specified as one of these options.

* "PCM/PSK/PM" — The line coded signal as per the pulse code modulation (PCM) format is phase
shift keying (PSK) modulated on a sine wave subcarrier and then phase modulated (PM) on a
residual carrier.

 "PCM/PM/biphase-L" — The biphase-L (Manchester) encoded data is phase modulated on a
residual carrier.

* "BPSK" — Suppressed carrier modulation by using non-return-to-zero (NRZ) data on the carrier.

For more details on these modulation schemes, see [3].

3-3

3 Objects

3-4

Data Types: char | string

PCMFormat — PCM format
"NRZ-L" (default) | "NRZ-M"

Pulse code modulation (PCM) format, specified as one of these options. This property specifies the
PCM coding in the CCSDS TC waveform.

* "NRZ-L" — NRZ-level
¢ "NRZ-M" — NRZ-mark

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: char | string

ModulationIndex — Modulation index in residual carrier phase modulation
0.4 (default) | scalar in the range [0.2, 2]

Modulation index in the residual carrier phase modulation, specified as a scalar in the range [0.2, 2].
Units are in radians.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SubcarrierFrequency — Sine wave subcarrier frequency
16000 (default) | 8000

Sine wave subcarrier frequency in Hertz, specified as 16000 or 8000. The subcarrier waveform is
used to PSK-modulate the NRZ data on the residual RF carrier.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: double

SymbolRate — Symbol rate
4000 (default) | 2000 | 1000 | 5600 | 250 | 125 |62.5|31.25|15.625|7.8125

Symbol rate in coded symbols per second, specified as one of these options.

* 4000
+ 2000
+ 1000
+ 500

+ 250

+ 125

* 62.5
+ 31.25

ccsdsTCConfig

+ 15.625
+ 7.8125

Note If you set SymbolRate to 4000 coded symbols per second, you must set the
SubcarrierFrequency property to 16000.

Dependencies
To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: double

SamplesPerSymbhol — Number of samples per symbol
10 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SubcarrierWaveform — Waveform used to PSK-modulate NRZ data
"sine"

This property is read-only.

Waveform used to PSK-modulate the NRZ data, returned as "sine". CCSDS TC supports only sine-
wave subcarriers.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: char | string

Object Functions

Specific to This Object

ccsdsTCWaveform Generate CCSDS TC waveform

Examples

Create CCSDS TC Object

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) configuration
object. Specify the properties of the object.

cfg = ccsdsTCConfig;
cfg.ChannelCoding = "LDPC";
cfg.HasTailSequence = false;
cfg.PCMFormat = "NRZ-M";

3 Objects

Display the properties of the CCSDS TC object.

disp(cfg)

ccsdsTCConfig with properties:

DataFormat: "CLTU"
ChannelCoding: "LDPC"
LDPCCodewordLength: 128
HasTailSequence: 0
Modulation: "PCM/PSK/PM"
PCMFormat: "NRZ-M"
ModulationIndex: 0.4000
SubcarrierFrequency: 16000
SymbolRate: 4000
SamplesPerSymbol: 10
Read-only properties:
SubcarrierWaveform: "sine"

Create CCSDS TC Waveform for Multiple CLTUs

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for multiple communications link transmission units (CLTUs).

Create a default CCSDS TC configuration object.

cfg = ccsdsTCConfig;
disp(cfg)

ccsdsTCConfig with properties:

DataFormat: "CLTU"
ChannelCoding: "BCH"
HasRandomizer: 1

Modulation: "PCM/PSK/PM"

PCMFormat: "NRZ-L"

ModulationIndex: 0.4000
SubcarrierFrequency: 16000
SymbolRate: 4000

SamplesPerSymbol: 10

Read-only properties:
SubcarrierWaveform: "sine"
Specify the number of CLTUs and the transfer frame length.

numCLTUs = 10;
transferFramesLength = 8; % Number of octets in each transfer frame

Generate the CCSDS TC time-domain waveform for the transfer frames.

c = cell(1l,numCLTUs); % Cell array to store the generated waveform for all CLTUs
for k=1:numCLTUs
bits = randi([0 1],8*transferFramesLength,1); % Bits in the TC transfer frame
waveform = ccsdsTCWaveform(bits,cfg);

3-6

ccsdsTCConfig

Frocessing

c{1,k} = waveform; % Waveform for each CLTU
end

Create a spectrum analyzer System object to display the frequency spectrum of the generated CCSDS
TC time-domain waveform from the last CLTU.

scope = spectrumAnalyzer;
scope.SampleRate = cfg.SamplesPerSymbol*cfg.SymbolRate;
scope(waveform) % Last CLTU spectrum display

ESTIMATIOM MEASUREMENTS SPECTRUM SPECTRAL MASK CHANMEL MEASUREMENTS

0
Frequency (kHz)

Sample Rate = 40.0000 kHz Frames =0 T = 0.00000

Version History
Introduced in R2021a

References

[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

[3] Nguyen, T.M., W.L. Martin, and Hen-Geul Yeh. "Required Bandwidth, Unwanted Emission, and
Data Power Efficiency for Residual and Suppressed Carrier Systems - a Comparative Study."

3-7

3 Objects

IEEE transactions on electromagnetic compatibility 37, no. 1 (February 1995): 34-50. https://
doi.org/10.1109/15.350238.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Properties LDPCCodewordLength and ChannelCoding must be provided as compile-time constant
inputs in code generation. Use coder.Constant (MATLAB Coder) object to convert the input
variable to a constant during code generation.

See Also

Functions
ccsdsTCWaveform | ccsdsTCIdealReceiver

Objects
ccsdsTMWaveformGenerator

3-8

dvbrcs2RecoveryConfig

dvbrcs2RecoveryConfig

Receiver configuration parameters for DVB-RCS2

Description
The dvbrcs2RecoveryConfig object creates a Digital Video Broadcasting Second Generation

Return Channel over Satellite (DVB-RCS2) recovery configuration object. Recover the frame protocol
data unit (PDU) from the received DVB-RCS2 waveform by using object properties.

Creation

Syntax

cfgrecs2
cfgrecs2

dvbrcs2RecoveryConfig
dvbrcs2RecoveryConfig(Name,Value)

Description
cfgrcs2 = dvbrcs2RecoveryConfig creates a default DVB-RCS2 recovery configuration object.

cfgrcs2 = dvbrcs2RecoveryConfig(Name,Value) sets “Properties” on page 3-9 using one or
more name-value pairs. Enclose each property name in quotes. For example,
dvbrcs2RecoveryConfig('IsCustomWaveform', true) recovers a custom DVB-RCS2 waveform
with the specified property values.

Properties

TransmissionFormat — Transmission format
"TC-LM" (default) | "SS-TC-LM"

Transmission format, specified as one of these values.

e "TC-LM" — Turbo codes with linear modulation (TC-LM)
e "SS-TC-LM" — Spread spectrum turbo codes with linear modulation (SS-TC-LM)

Data Types: char | string

ContentType — Frame PDU burst content type
"traffic" (default) | "logon" | "control"

Frame protocol data unit (PDU) burst content type, specified as "traffic", "logon", or
"control".

Data Types: char | string

IsCustomWaveform — Custom waveform indicator
0 or false (default) | 1 or true

3-9

3 Objects

3-10

Custom waveform indicator, specified as one of these values.

* 0 (false) — Use this option to demodulate the complex in-phase quadrature (IQ) samples from a
standard-defined reference waveform.

* 1 (true) — Use this option to demodulate the complex IQ samples from a custom waveform.
Data Types: logical

WaveformID — Reference waveform ID
1 (default) | positive integer

Reference waveform ID, specified as one of these options.

* Integerin the range [1, 22] or [32, 49] — Use this option when you set the TransmissionFormat
property to "TC-LM".

* Integer in the range [1, 19] — Use this option when you set the TransmissionFormat property
to "SS-TC-LM".

Based on the values set for TransmissionFormat and WaveformID properties, this object considers

the receiver parameters according to ETSI EN 301 545-2 Annex A Table A-1 and A-2 [1].

Dependencies

To enable this property, set the IsCustomWaveform property to false.
Data Types: double | unit8

SpreadingFactor — Spreading factor
2 (default) | integer in the range [2, 16]

Spreading factor, specified as an integer in the range [2, 16].

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

Data Types: double

BurstLength — Burst length
256 (default) | integer in the range [7, 25,233,405]

Burst length, specified as an integer in the range [7, 25,233,405]. This length includes the preamble,
postamble, and pilot sum, in addition to the payload symbols.

When you set the TransmissionFormat property to "TC-LM", the unit of burst length is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of burst length is chips.

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: double

MappingScheme — Mapping scheme
"pi/2-BPSK" (default) | "QPSK" | "8PSK" | "16QAM"

Mapping scheme, specified as one of these values.

dvbrcs2RecoveryConfig

* "pi/2-BPSK"
. "QPSK"

. "8PSK"

. "16QAM"

Dependencies

To enable this property, set the TransmissionFormat property to "TC-LM" and the
IsCustomWaveform property to true.

Note When you set the TransmissionFormat property to "SS-TC-LM", the only valid value of
MappingScheme is "pi/2-BPSK".

Data Types: char | string

CodeRate — Code rate
"1/3" (default) | "1/2" | "2/3" | "3/4" | "4/5" | "5/6" | "6/7" | "7/8"

Code rate, specified as one of these values.

o« "2/3","3/4","4/5","5/6", "6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "8PSK".

« "3/4","4/5","5/6","6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "16QAM".

All code rates are applicable if MappingScheme property is set to "pi/2-BPSK" or "QPSK".
Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: char | string

PermutationParameters — Permutation control parameters
[9 0 0 0 O] (default) | vector

Permutation control parameters that the dvbrcs2RecoveryConfig uses to generate turbo encoder
interleaver indices, specified as a five-element vector in order: P, Q,, Q;, Q,, and Q5. P must be in the
range [9, 255], and Q,, Q,, Q,, and Q; must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to
PayloadLengthInBytes*4.

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: double

PreambleLength — Preamble length
8 (default) | integer in the range [0, 255]

Preamble length, specified as an integer in the range [0, 255].

3-11

3 Objects

3-12

When you set the TransmissionFormat property to "TC-LM", the unit of preamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of preamble
length is chips.

A preamble of this specified length is prefixed to the payload symbols.

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: double

PostambleLength — Postamble length
8 (default) | integer in the range [0, 255]

Postamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of postamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of postamble
length is chips.

A postamble of this specified length is suffixed to the payload symbols in the burst sequence.

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: double

PilotPeriod — Pilot period
0 (default) | integer in the range [0, 4095]

Pilot period, specified as an integer in the range [0, 4095]. A value of 0 indicates no pilots are
inserted.

When you set the TransmissionFormat property to "TC-LM", the unit of pilot period is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot period is chips.

The pilot period represents the length of the sequence from first symbol of a pilot block to the first
symbol of the next pilot block in symbols or chips.

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotBlockLength — Pilot block length
1 (default) | integer in the range [1, 255]

Pilot block length, specified as an integer in the range [1, 255].

After every PilotPeriod symbols or chips, a pilot block of this specified length is detected, which
must be removed to recover the payload symbols.

Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to
a positive integer.

dvbrcs2RecoveryConfig

Data Types: double

PilotSum — Total pilot symbols or chips in received waveform
0 (default) | nonnegative integer

Total pilot symbols or chips in the received waveform, specified as one of these options.

* Integer in the range [0, 255] — Use this option when you set the TransmissionFormat property
to "TC-LM".

* Integer in the range [0, 65,535] — Use this option when you set the TransmissionFormat
property to "SS-TC-LM".

When you set the TransmissionFormat property to "TC-LM", the unit of pilot sum is symbols.

When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot sum is chips.

Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to

a positive integer.

Data Types: double

ScramblingPolynomial — Scrambling polynomial
16-bit zero vector (default) | 16-bit vector of binary values | numeric vector

Scrambling polynomial, specified as one of these options.

» 16-bit vector of binary values from the most significant bit (MSB), z'5, to least significant bit
(LSB), z!. Each element of this vector corresponds to the coefficient of z and its exponent,
specified from MSB to LSB. For details on the binary representation, see ETSI EN 301 545-2
Section 7.3.7.1.5.

* Numeric vector containing the exponents of z for nonzero terms of the polynomial in descending
order.

The scrambling polynomial determines the shift register feedback connection to generate the
spreading sequence.

The coefficient of 2° is always 1.

The default value of this scrambling polynomial indicates the default scrambling sequence provided
in the standard. When you set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to false, the default scrambling sequence is used to descramble the
received reference waveform.

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

Data Types: double | logical

ScramblingInitialConditions — Scrambling initial conditions
[111111111111111 1] (default)]|1|16-bitvector of binary values

Scrambling initial conditions of the shift register, specified as one of these options.

3-13

3 Objects

3-14

* 1 — Use this option to set the initial condition of each cell of the shift register to this value.

 16-bit vector of binary values from the MSB (2'6) to LSB (2!) — Use this option to set the initial
condition of each cell of the shift register to the corresponding element in this vector.

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
ScramblingPolynomial property to a value other than the default value.

Data Types: double | logical

NumDecodingIterations — Number of decoding iterations
8 (default) | positive integer

Number of decoding iterations of the DVB-RCS2 turbo decoder, specified as a positive integer.

Data Types: double

PayloadLengthInBytes — Payload length in bytes
10 (default) | positive integer

This property is read-only.

Payload length in bytes, retuned as a positive integer. This length represents the DVB-RCS2 turbo
decoder output length.

Use this property output to choose a valid value for the first element of PermutationParameters
property (that is, P).

PayloadLengthInBytes*4 and P must be co-primes.
Data Types: double

Object Functions

Specific to This Object
dvbrcs2BitRecover Recover bits for DVB-RCS2 waveform

Examples

Create DVB-RCS2 Receiver Object
Create a DVB-RCS2 recovery configuration object.

Create and then set the properties of the object.

cfgrcs2 = dvbrcs2RecoveryConfig;
cfgrcs2.TransmissionFormat = "SS-TC-LM";
cfgrcs2.ContentType = "control";
cfgrcs2.WaveformID = 20;
cfgrcs2.NumDecodingIterations = 6;

Display the properties of the DVB-RCS2 object.

dvbrcs2RecoveryConfig

disp(cfgrcs2)
dvbrcs2RecoveryConfig with properties:

TransmissionFormat: "SS-TC-LM"

ContentType: "control"
IsCustomWaveform: O
WaveformID: 20

Coding and Modulation:
NumDecodingIterations: 6

Recover PDU from DVB-RCS2 Reference Waveform
Recover the frame PDU for a DVB-RCS2 reference waveform.

Set the properties of a DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.TransmissionFormat = "SS-TC-LM";
wg.WaveformID = 7;
wg.SamplesPerSymbol = 2;

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU) ;

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = wg.SamplesPerSymbol;

EsNodB = 1;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, "measured");

Create and then configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;
cfg.TransmissionFormat = wg.TransmissionFormat;
cfg.WaveformID = wg.WaveformID;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',0.2, ...
"InputSamplesPerSymbol', sps,
‘DecimationFactor',sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay.
filtOut = rxFilter([rxIn;

complex(zeros(span/2*sps,1))1);
rxSymb = filtOut(span+l:end);

3-15

3 Objects

3-16

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOut,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10”(-EsNodB/10));
fprintf("Erroneous frame PDU = %d\n", pduErr)

Erroneous frame PDU = 0
fprintf("Number of bit errors = %d\n", sum(framePDU~=rx0ut))

Number of bit errors = 0

Version History

Introduced in R2021b

References

[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Interactive Satellite Systems (DVB-RCS2); Part 2: Lower Layers for Satellite
Standard.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
See Also

Functions
dvbrcs2BitRecover | dvbrcs2TurboDecode

Objects
dvbrcs2WaveformGenerator

Pattern

Pattern

Radiation pattern visualization

Description

The Pattern object defines a radiation pattern visualization for a transmitter or receiver.

Creation

You can create Pattern objects by using the pattern object function of the Transmitter or
Receiver object.

Properties

Size — Size of radiation pattern plot
1000000 (default) | numeric scalar

Size of the radiation pattern plot, specified as a numeric scalar in meters. This value represents the
distance between the antenna position and the point on the plot with the highest gain.

Data Types: double

Colormap — Colormap for coloring pattern plot
'jet' (default) | predefined colormap name | M-by-3 matrix

Colormap for coloring the pattern plot, specified as a predefined colormap name or an M-by-3 matrix
of red, green, blue (RGB) triplets that define M individual colors. For more information on the
colormap names, see “map”.

Data Types: double | string | char

Transparency — Transparency of pattern plot
0.4 (default) | scalar in the range [0, 1]

Transparency of the pattern plot, specified as a scalar in the range [0, 1]. A value of 0 means the plot
is completely transparent, and a value of 1 means the plot is opaque.
Data Types: double

VisibilityMode — Visibility of graphic relative to its parent
"inherit' (default) | 'manual’

Visibility of the graphic relative to its parent, specified as 'inherit' or 'manual’. This visibility
mode determines the visibility of this graphic in the satelliteScenarioViewer object relative to
its parent graphic. The parent graphic of the Pattern object is its corresponding satellite.

* 'inherit'— Inherit visibility from the parent graphic. The visibility of the graphic matches the
parent visibility.

* 'manual'— Do not inherit visibility from the parent. The visibility of the graphic is independent
of the parent visibility.

3-17

3 Objects

Data Types: char | string

Object Functions
show Show object in satellite scenario viewer
hide Hide satellite scenario entity from viewer

Examples

Visualize Radiation Pattern of Transmitter Antenna on Satellite

Set up the satellite scenario.

startTime = datetime(2021,2,12,13,30,0);

stopTime = startTime + hours(5);

sampleTime = 60; %sseconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);

gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat, "Frequency",3e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

4 Satellae S enarns Vieser —]

-

S0
"_ " » | fiﬁ 12 P 14000 UG Fab 13 2021 16:0000 UTC Fols 13 2021 1500°00 UTC
i)
| /i | _ |

3-18

Pattern

Plot the radiation pattern of the transmitter antenna.

pat = pattern(tx);

a Satellde Scenamd Viewer - o

-

Sl
Febs 12 2021
12000 LTS

4 11 »

Soroe: D, Maxw, Carfhete Ceographes, and T GE User Commanity
Fob 13 HCH 1420880 UTC Feb 13 2631 1606808 UTC Febs 13 2021 15.006.08 UTC
I ¥ | |

Point the satellite at the ground station. The pattern rotates to reflect the new orientation of the
antenna.

pointAt(sat,gs);

3-19

3 Objects

Souroe D, Maxw, Larthets Ceographes, and 5 U Comemonity
Fnh 13 TG 1488l LTC Feb 13 2631 1606808 UTC Febs 13 2021 150808 UTC
I | |

Increase the visual size of the radiation pattern.

pat.Size = 3000000;
pat.Colormap = "parula";

3-20

Pattern

-

il
Febs 12 2021
136000 LT

4 11 »

Soroe: [, Maxw, Carfhete CGeographes, and T G Uses Commanity
F:ﬁ 13 TG 1488l LTC Feb 13 2631 1606668 UTC Febs 13 2021 15.06:08 UTC
A | |

Version History
Introduced in R2021b

See Also

Objects
Receiver | Transmitter | satelliteScenarioViewer | satelliteScenario

Functions
show | hide | receiver | transmitter

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

3-21

3 Objects

3-22

p618Config

Create P.618 configuration object

Description

The p618Config ohject sets the P.618 configuration parameters required for the calculation of the
Earth-space propagation losses, cross-polarization discrimination, and sky noise temperature, as
defined in the ITU-R P.618 recommendation [1].

Creation

Syntax

cfgP618 = p618Config

cfgP618 = p618Config(Name,Value)

Description

cfgP618 = p618Config creates a P618 configuration object with default property values.

cfgP618 = p618Config(Name,Value) specifies “Properties” on page 3-22 using one or more
name-value pair arguments. Enclose each property name in quotes. For example,

p618Config(' GasAnnualExceedance', 10, 'AntennaEfficiency',0.65) configures a P618
configuration object with 10% average annual time percentage of excess for gaseous attenuation and
0.65 antenna efficiency.

Properties

Frequency — Signal frequency
14.25e9 (default) | scalar in the range [1e9, 55€9]

Signal frequency in Hz, specified as a scalar in the range [1€9, 55e9].

Data Types: double | single

ElevationAngle — Elevation angle
31.0769 (default) | scalar in the range [5, 90]

Elevation angle in degrees, specified as a scalar in the range [5, 90].

Data Types: double | single

Latitude — Earth station latitude
51.5000 (default) | scalar in the range [-90, 90]

Earth station latitude in degrees, specified as a scalar in the range [-90, 90]. A positive value
corresponds to a North latitude, and a negative value corresponds to a South latitude.

Data Types: double | single

p618Config

Longitude — Earth station longitude
-0.1400 (default) | scalar in the range [-180, 180]

Earth station longitude in degrees, specified as a scalar in the range [-180, 180]. A positive value
corresponds to East longitude, and a negative value corresponds to West longitude.

Data Types: double | single

GasAnnualExceedance — Average annual time percentage of excess for gaseous
attenuation
1 (default) | scalar in the range [0.1, 99]

Average annual time percentage of excess for the gaseous attenuation, specified as a scalar in the
range [0.1, 99]. This property calculates the gaseous attenuation, which satisfies the exceedance
condition, in terms of the percentage of an average year.

Note The fraction of time during which a preselected threshold is exceeded in an average year is
referred to as the annual time percentage of excess.

Data Types: double | single

CloudAnnualExceedance — Average annual time percentage of excess for cloud
attenuation
1 (default) | scalar in the range [0.1, 99]

Average annual time percentage of excess for the cloud attenuation, specified as a scalar in the range
[0.1, 99]. This property calculates the cloud attenuation, which satisfies the exceedance condition, in
terms of the percentage of an average year.

Data Types: double | single

RainAnnualExceedance — Average annual time percentage of excess for rain attenuation
1 (default) | scalar in the range [0.001, 5]

Average annual time percentage of excess for the rain attenuation, specified as a scalar in the range
[0.001, 5]. This property calculates the rain attenuation, which satisfies the exceedance condition, in
terms of the percentage of an average year.

Data Types: double | single
ScintillationAnnualExceedance — Average annual time percentage of excess for

tropospheric scintillation
1 (default) | scalar in the range [0.01, 50]

Average annual time percentage of excess for the tropospheric scintillation, specified as a scalar in
the range [0.01, 50]. This property calculates the tropospheric scintillation, which satisfies the
exceedance condition, in terms of the percentage of an average year.

Data Types: double | single

TotalAnnualExceedance — Average annual time percentage of excess for total attenuation
1 (default) | scalar in the range [0.001, 50]

3-23

3 Objects

Average annual time percentage of excess for the total attenuation, specified as a scalar in the range
[0.001, 50]. This property calculates the total attenuation, which satisfies the exceedance condition,
in terms of the percentage of an average year.

Data Types: double | single

PolarizationTiltAngle — Polarization tilt angle
0 (default) | scalar in the range [-90, 90]

Polarization tilt angle in degrees, specified as a scalar in the range [-90, 90].

Data Types: double | single

AntennaDiameter — Physical diameter of earth station antenna
1 (default) | positive scalar

Physical diameter of the earth station antenna in meters, specified as a positive scalar.

Data Types: double | single

AntennaEfficiency — Antenna efficiency of earth station antenna
0.5 (default) | positive scalar

Antenna efficiency of the earth station antenna, specified as a positive scalar.

Data Types: double | single
Object Functions

Specific to This Object
p618PropagationLosses Calculate Earth-space propagation losses, cross-polarization
discrimination, and sky noise temperature

Examples

Create P.618 Configuration Object
Create a default P.618 configuration object.
cfg = p618Config;

Specify the signal frequency as 25 GHz, elevation angle as 45 degrees, and antenna efficiency as
0.65. Set the time percentage of excess for the total attenuation per annum as 0.001.
cfg.Frequency = 25e9;

cfg.ElevationAngle = 45;

cfg.AntennaEfficiency = 0.65;

cfg.TotalAnnualExceedance = 0.001;

Set the earth station direction.

cfg.Latitude = 30; % North direction
cfg.Longitude = 120; % East direction

Display the properties of the configuration object.

3-24

p618Config

disp(cfg)
p618Config with properties:

Frequency: 2.5000e+10

ElevationAngle: 45

Latitude: 30

Longitude: 120

GasAnnualExceedance: 1

CloudAnnualExceedance:
RainAnnualExceedance:
ScintillationAnnualExceedance:
TotalAnnualExceedance:
PolarizationTiltAngle:
AntennaDiameter:
AntennaEfficiency:

.0000e-03

OHORRREKE

.6500

Calculate Propagation Losses, Cross-Polarization Discrimination, and Sky Noise
Temperature

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat', 'file');
p837 = exist('p837.mat', " 'file');
p840 = exist('p840.mat','file');

matFiles = [maps p836 p837 p840];
if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz','file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz');
else
untar('ITURDigitalMaps.tar.gz');
end
addpath(cd);
end

Create a default P.618 configuration object.
cfg = p618Config;

Specify the time percentage of excess for the rain attenuation per annum as 0.01 and the time
percentage of excess for the total attenuation per annum as 0.001.

cfg.RainAnnualExceedance = 0.01;
cfg.TotalAnnualExceedance = 0.001;

Calculate the propagation losses, cross-polarization discrimination, and sky noise temperature.
[pl,xpd,tsky] = p6l8PropagationLosses(cfg)

pl = struct with fields:
Ag: 0.2269
Ac: 0.4552

3-25

3 Objects

3-26

Ar: 6.7981
As: 0.2633
At: 15.6091

xpd = 32.8876

tsky = 267.4689

Calculate Propagation Losses in Light Rainfall

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat', 'file');
p837 = exist('p837.mat', 'file');
p840 = exist('p840.mat', 'file');
matFiles = [maps p836 p837 p8401];

if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz', 'file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz";
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz"');
else
untar('ITURDigitalMaps.tar.gz"');
end
addpath(cd);
end

Create a P618 configuration object that occupies a signal frequency of 20 GHz.
cfg = p618Config('Frequency',20e9);
Calculate the propagation losses in a light rainfall of 1 mm/hr with an earth station height of 0.75 km.
pl = p618PropagationLosses(cfg, 'RainRate',1, 'StationHeight',0.75)
pl = struct with fields:
Ag: 0.7996
Ac: 0.8793
Ar: 0.0177

As: 0.3187
At: 1.7514

Version History
Introduced in R2021a

References

[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

p618Config

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Objects
p618SiteDiversityConfig

Functions
p618PropagationLosses | p618SiteDiversityQutage

3-27

3 Objects

3-28

p618SiteDiversityConfig

Create P.618 site diversity configuration object

Description

The p618SiteDiversityConfig object sets P618 site diversity configuration parameters required
for the calculation of outage probability due to rain attenuation, as defined in the ITU-R P618
recommendation [1].

Creation

Syntax

cfgSD
cfgSD

p618SiteDiversityConfig
p618SiteDiversityConfig(Name,Value)

Description

cfgSD = p618SiteDiversityConfig creates a P.618 site diversity configuration object with
default property values.

cfgSD = p618SiteDiversityConfig(Name,Value) specifies “Properties” on page 3-28 using
one or more name-value pair arguments. Enclose each property name in quotes. For example,
p618SiteDiversityConfig(' Frequency',14.25e9, 'ElevationAngle', [52.4099 52.4852])
configures a P.618 site diversity configuration object with a 14.25 GHz signal frequency and an
elevation angle for two sites as [52.4099 52.4852].

Properties

Frequency — Signal frequency
14.25e9 (default) | scalar in the range [1e9, 55€9]

Signal frequency in Hz, specified as a scalar in the range [1€9, 55e9].

Data Types: double | single

ElevationAngle — Elevation angle of two sites
[52.4099 52.4852] (default) | two-element vector of values in the range [0, 90]

Elevation angle of the two sites in degrees, specified as a two-element vector of values in the range
[0, 901.

Data Types: double | single

Latitude — Latitude of two sites
[25.768 25.463] (default) | two-element vector of values in the range [-90, 90]

p618SiteDiversityConfig

Latitude of the two sites in degrees, specified as a two-element vector of values in the range [-90, 90].
A positive value corresponds to a North latitude, and a negative value corresponds to a South
latitude.

Data Types: double | single

Longitude — Longitude of two sites
[-80.205 -80.486] (default) | two-element vector of values in the range [-180, 180]

Longitude of the two sites in degrees, specified as a two-element vector of values in the range [-180,
180]. A positive value corresponds to East longitude, and a negative value corresponds to West
longitude.

Data Types: double | single

PolarizationTiltAngle — Polarization tilt angle for two sites
[0 O] (default) | two-element vector of values in the range [-90, 90]

Polarization tilt angle for the two sites in degrees, specified as a two-element vector of values in the
range [-90, 90].

Data Types: double | single

SiteDistance — Separation between two sites
44,0256 (default) | positive scalar

Separation between the two sites in km, specified as a positive scalar.

Data Types: double | single

AttenuationThreshold — Attenuation threshold on two links
[9 3] (default) | two-element vector

Attenuation threshold on the two links in dB, specified as a two-element vector. The attenuation
threshold on an earth space link is the maximum allowed attenuation on the path. Any attenuation
value above this property value is considered an outage in the link.

Data Types: double | single
Object Functions

Specific to This Object

p618SiteDiversityOutage Calculate outage probability due to rain attenuation with site diversity

Examples

Create P.618 Site Diversity Configuration Object
Create a default P.618 site diversity configuration object.
cfg = p618SiteDiversityConfig;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

3-29

3 Objects

3-30

cfg.PolarizationTiltAngle = [-90 90];
cfg.SiteDistance = 50;
cfg.AttenuationThreshold = [9 9];

Set the direction of each earth station.

cfg.Latitude = [30 60];
cfg.Longitude = [120 150];

North direction
East direction

)
)
)

)

Display the properties of the configuration object.
disp(cfg);
p618SiteDiversityConfig with properties:

Frequency: 1.4500e+10
ElevationAngle: [52.4099 52.4852]
Latitude: [30 60]
Longitude: [120 150]
PolarizationTiltAngle: [-90 90]
SiteDistance: 50
AttenuationThreshold: [9 9]

Calculate Outage Probability due to Rain Attenuation with Site Diversity

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

maps = exist('maps.mat','file');
p836 = exist('p836.mat', 'file');
p837 = exist('p837.mat', 'file');
p840 = exist('p840.mat', 'file');

0 .

matFiles = [maps p836 p837 p840];
if ~all(matFiles)
if ~exist('ITURDigitalMaps.tar.gz', 'file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz";
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz"');
else
untar('ITURDigitalMaps.tar.gz"');
end
addpath(cd);
end

Create a P.618 site diversity configuration object with a signal frequency of 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

cfgsd.PolarizationTiltAngle = [-90 90];
cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

p618SiteDiversityConfig

Calculate the outage probability due to rain attenuation with site diversity.

outage = p618SiteDiversityOutage(cfgsd)

outage = 0.0338

Version History
Introduced in R2021a

References

[1] International Telecommunication Union, ITU-R Recommendation P618 (12/2017).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Objects
p618Config

Functions
p618PropagationLosses | p618SiteDiversityQutage

3-31

3 Objects

3-32

satelliteCNRConfig

Carrier-to-noise ratio configuration parameters

Description

Use the satelliteCNRConfig object to create a carrier-to-noise ratio (CNR) configuration object
with default or specified values.

Creation

Syntax

cfg = satelliteCNRConfig
cfg satelliteCNRConfig(Name=Value)

Description
cfg = satelliteCNRConfig creates a default CNR configuration object.
This object contains the parameters required to calculate a satellite link budget CNR.

cfg = satelliteCNRConfig(Name=Value) sets properties on page 3-32 using one or more
name-value arguments. For example, TransmitterPower=20 sets the transmitter power to 20 dBW.

Properties

TransmitterPower — Transmitter power
10 (default) | real scalar

Transmitter power in dBW, specified as a real scalar.

Data Types: double

TransmitterSystemLoss — Total system loss of the transmitter
0 (default) | nonnegative real scalar

Total system loss of the transmitter in dB, specified as a nonnegative real scalar.

Data Types: double

TransmitterAntennaGain — Transmitter antenna gain
10 (default) | nonnegative real scalar

Transmitter antenna gain in dBi, specified as a nonnegative real scalar.

Data Types: double

Distance — Distance between transmitter and receiver antenna
3786 (default) | nonnegative real scalar

satelliteCNRConfig

Distance between the transmitter and the receiver antenna in km, specified as a nonnegative real
scalar.

Data Types: double

Frequency — Signal frequency

14 (default) | positive real scalar

Signal frequency in GHz, specified as a positive real scalar.
Data Types: double

MiscellaneousLoss — Miscellaneous losses
0 (default) | nonnegative real scalar

Miscellaneous losses in dB, specified as a nonnegative real scalar. Major miscellaneous losses include
polarization loss, interference loss, and atmospheric attenuation.
Data Types: double

GainToNoiseTemperatureRatio — Receiver gain-to-noise temperature ratio
3 (default) | real scalar

Receiver gain-to-noise temperature ratio in the direction of the transmitting antenna, specified as a
real scalar. Value is in dB/K.

Data Types: double

ReceiverSystemLoss — Total receiver system loss
0 (default) | nonnegative real scalar

Total receiver system loss in dB, specified as a nonnegative real scalar.

Data Types: double

BitRate — Bit rate of link
10 (default) | positive real scalar

Bit rate of the link in Mbps, specified as a positive real scalar.

Data Types: double

SymbolRate — Symbol rate of link
10 (default) | positive real scalar

Symbol rate of the link in Msym/s, specified as a positive real scalar.

Data Types: double

Bandwidth — Signal bandwidth
6 (default) | positive real scalar

Signal bandwidth in MHz, specified as a positive real scalar.

Data Types: double

3-33

3 Objects

3-34

Object Functions
satelliteCNR Carrier-to-noise ratio for configured satellite link budget parameters

Examples

Create Satellite CNR Object
Create a default satellite carrier-to-noise ratio (CNR) object.

Set the bandwidth to 15 MHz and gain-to-noise temperature to 5 dB/K.

cfg = satelliteCNRConfig;
cfg.Bandwidth = 15;
cfg.GainToNoiseTemperatureRatio = 5;

Display the CNR configuration object properties.
disp(cfg)
satelliteCNRConfig with properties:

TransmitterPower: 10
TransmitterSystemLoss: 0
TransmitterAntennaGain: 10

Distance: 3786

Frequency: 14
MiscellaneouslLoss: 0
GainToNoiseTemperatureRatio: 5
ReceiverSystemLoss: 0

BitRate: 10

SymbolRate: 10

Bandwidth: 15

Calculate CNR and Link Margin
Calculate the CNR and the received link margin for the specified link budget parameters.

Create a default CNR configuration object, and then set its properties.

cfg = satelliteCNRConfig;

cfg.TransmitterPower = 17; % in dBW
cfg.TransmitterSystemLoss = 9; % in dB
cfg.TransmitterAntennaGain = 38; % in dBi
cfg.Distance = 40215; % in km
cfg.Frequency = 11; % in GHz

% Here, miscellaneous losses include polarization loss, interference
% loss, and antenna mispointing loss, respectively.

polLoss = 3.0103;

intLoss = 2;

antLoss = 1;

cfg.MiscellaneousLoss = polLoss + intLoss + antLoss; % in dB
cfg.GainToNoiseTemperatureRatio = 25; % in dB/K

satelliteCNRConfig

in dB
in Mbps

cfg.ReceiverSystemLoss = 2;
cfg.BitRate = 10;

o° o°

Display the CNR configuration object properties.
disp(cfg)
satelliteCNRConfig with properties:

TransmitterPower: 17

TransmitterSystemLoss: 9

TransmitterAntennaGain: 38
Distance: 40215

Frequency: 11
MiscellaneousLoss: 6.0103

GainToNoiseTemperatureRatio: 25

ReceiverSystemLoss: 2

BitRate: 10

SymbolRate: 10

Bandwidth: 6

Calculate the CNR.
[cn,info] = satelliteCNR(cfg)
cn = 18.4440

info = struct with fields:
TransmitterEIRP: 46
FSPL: 205.3634
ReceivedIsotropicPower: -165.3737
CarrierToNoiseDensityRatio: 86.2255
ReceivedEbNo: 16.2255
ReceivedEsNo: 16.2255

Compute the link margin. Assume a required energy per bit to noise power density ratio (Eb/No) of

10 dB and an implementation loss of 2 dB in the receiver.
reqEbNo = 10;

implLoss = 2;

margin = info.ReceivedEbNo - reqEbNo - implLoss

margin = 4.2255

Version History
Introduced in R2022b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3-35

3 Objects

See Also

Functions
satelliteCNR

3-36

vita49Reader

vitad9Reader

VITA 49 file reader

Description

The vitad49Reader object reads and decodes the VMEbus International Trade Association (VITA) 49
packets from the input VITA 49 file. The object reads both signal data packets and context packets.

Creation

Syntax

vitad49ReaderObj = vitad49Reader(filename)

vita49ReaderObj = vitad49Reader(filename,QutputTimestampFormat="datetime")
Description

vitad49ReaderObj = vitad49Reader(filename) creates a VITA 49 file reader object to read the
packets from the input VITA 49 file.

vitad49ReaderObj = vitad49Reader(filename,OutputTimestampFormat="datetime") sets
the OutputTimestampFormat property to "datetime".

Input Arguments

filename — Name of VITA 49 file
character vector | string scalar

Name of a VITA 49 file, including the extension, specified as a character vector or a string scalar.

Data Types: char | string

Properties

OutputTimestampFormat — Output format for packet timestamp
"seconds" (default) | "datetime"

Output format for the packet timestamp, specified as "seconds" or "datetime". This value
specifies the timestamp of the decoded VITA 49 packet.

Data Types: char | string

PacketsRead — Total number of packets read
integer scalar

This property is read-only.

Total number of packets read, stored as an integer scalar.

3-37

3 Objects

Data Types: double

Object Functions
read Read next VITA 49 packet from file
reset Reset VITA 49 file reader to first VITA 49 packet of file

Examples

Read Specified Number of Packets from File

Create a VITA 49 file reader object, specifying the name of a VITA 49 file and an output format for the
packet timestamp.

vitad49ReaderObj = vitad49Reader("VITA49SampleData.bin");
vita49ReaderObj.OutputTimestampFormat = "seconds";

Specify the number of packets to be read from the file.

numpkt = 11;

Read the specified number of packets from the VITA 49 file to the MATLAB® workspace.
[signalDataPacket, contextPacket, contextPacketChangeIndex] = read(vita49Reader0bj,NumPackets=numpl

signalDataPacket = struct with fields:
PacketType: 1
StreamID: ©
ClassID: "7C386C0000"
PadBitCount: 0
IntegerTimestampType: "GPS"
IntegerTimestampValue: 1625215654
FractionalTimestampType: "real time"
FractionalTimestampValue: 900000344000
RawBytes: [1472x1 uint8]
IQSamples: [361x1 doublel]
Trailer: [1x1 struct]

contextPacket=1x10 struct array with fields:
PacketType
StreamID
ClassID
IntegerTimestampType
IntegerTimestampValue
FractionalTimestampType
FractionalTimestampValue
RawBytes
ContextFieldChangelIndicator
ReferencePointIdentifier
Bandwidth
IFReferenceFrequency
RFFrequency
RFFrequencyOffset
IFBandOffset
ReferencelLevel

3-38

vita49Reader

Gain

OverRangeCount
SampleRate
TimestampAdjustment
TimestampCalibrationTime
StateAndEventIndicator
SignalDataPayloadFormat

contextPacketChangeIndex = 1x10

0 0 0 0 0 0 0

Version History
Introduced in R2022b

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation is available only when the QutputTimestampFormat property is set to the default

value of "seconds".

See Also
read | reset

Topics
“VITA 49 File Reader”

3-39

3 Objects

Access

Access analysis object belonging to scenario

Description

The Access object defines an access analysis object belonging to a Satellite, GroundStation or
ConicalSensor.

Creation

You can create an Access object using the access object function of GroundStation or
Satellite.

Properties

Sequence — IDs of satellites, ground stations, or conical sensors
vector of positive numbers

IDs of the satellites, ground stations, and conical sensors defining access analysis, specified as a
vector of positive numbers.

LineWidth — Visual width of access analysis object
1 (default) | scalar

Visual width of access analysis object in pixels, specified as a scalar in the range (0, 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of analysis line
[0.5 0 1] (default) | RGB triplet | hexadecimal color code | color name | short name

Color of access analysis line, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

3-40

Access

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" trt [1 0 0] "#FF0000" —

"green" "g" [0 1 0] "#0OOFFOO"

"blue" "b" [0 0 1] "#0OOOFF" ——

"cyan" "c" [0 1 1] "#OOFFFF"

“magenta" "m" [1 0 1] "#FFOOFF" I

"yellow" ty" [110] "#FFFFOO"

"black" "K" [0 0 0] "#000000" E—

"white" w" [111] "#FFFFFF"]

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I
Example: 'blue’

Example: [0 0 1]

Example: '#0000FF"

Object Functions

show Show object in satellite scenario viewer

accessStatus Status of access between first and last node defining access analysis
accessIntervals Intervals during which access status is true

accessPercentage Percentage of time when access exists between first and last node in access

hide

Examples

Add Ground

analysis
Hide satellite scenario entity from viewer

Stations to Scenario and Visualize Access Intervals

Create a satellite scenario and add ground stations from latitudes and longitudes.

3-41

3 Objects

3-42

startTime = datetime(2020,5,1,11,36,0);

stopTime = startTime + days(1);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);
lat 10;

lon -30;

gs = groundStation(sc,lat,lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 10;

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscension0OfAscendingNode,argumentOfPeriapsis, trueAnomaly) ;

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat,gs);
intvls = accessIntervals(ac)

intvls=8x8 table

Source Target IntervalNumber StartTime EndTir
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

Access

& Satellde Scenamd Viewer = o =

-

Sl
1
11000 UTC

TN

Souroe: D, Maxcw, Carfhete Ceographes, and T G Uses Commanity
nﬁ“MMUTE: iy 1 hECHD 1808 83 LITC By 2 00 08 e 00 LT Mary 3 20chd 86 00 60 UTC
] 21 | |

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver | satellite

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

3-43

3 Objects

3-44

ConicalSensor

Conical sensor object belonging to satellite scenario

Description

ConicalSensor defines a conical sensor object belonging to a satellite scenario.

Creation

You can create the ConicalSensor object using the conicalSensor object function of the
Satellite, GroundStation, or Gimbal objects.

Properties

Name — Conical sensor name
"Conical sensor idx" (default) | string scalar
character vectors

string vector | character vector | cell array of

You can set this property only when calling the conicalSensor function. After you call the
conicalSensor function, this property is read-only.

Conical sensor name, specified as a name-value argument consisting of 'Name' and a string scalar,
string vector, character vector, or a cell array of character vectors.
+ Ifyou are adding only one conical sensor, specify Name as a string scalar or a character vector.

» Ifyou are adding multiple conical sensors, specify Name as a string scalar, character vector, string
vector, or a cell array of character vectors. All conical sensors that you add as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vectors must equal the number of conical sensors that you are
adding. Each conical sensor is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by the satellite scenario.

Data Types: char | string

ID — ConicalSensor ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
ConicalSensor ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; O; O] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

ConicalSensor

» Ifyou are adding one conical sensor, MountingLocation is a three-element vector. The elements
specify the x, y, and z components of the Cartesian coordinates in the body frame of conical
Sensor.

» If you are adding multiple conical sensors, MountinglLocation can be a three-element vector or
a matrix. When specified as a vector, the same set of mounting locations are assigned to all
specified conical sensors. When specified as a matrix, MountinglLocation must contain three
rows and the same number of columns as the conical sensors. The columns correspond to the
mounting location of each specified conical sensor and the rows correspond to the mounting
location coordinates in the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountinglLocation property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll, in that
order. Yaw, pitch, and roll are positive rotations about the z-axis, intermediate y-axis, and
intermediate x-axis of the parent.

» Ifyou are adding one conical sensor, MountingAngles is a three-element vector.

* Ifyou are adding multiple conical sensors, MountingAngles can be a three-element vector or a
matrix. When specified as a vector, the same set of mounting angles are assigned to all specified
conical sensors. When specified as a matrix, MountingAngles must contain three rows and the
same number of columns as the conical sensors. The columns correspond to the mounting angles
of each specified conical sensor and the rows correspond to the yaw, pitch, and roll angles in the
parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Example: [0; 30; 60]
Data Types: double

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180] | vector

Field of view angle in degrees, specified as a scalar in the range [0, 180] or a vector.

» Ifyou add one conical sensor, MaxViewAngle must be a scalar.

» If you add multiple conical sensors, MaxViewAngle can be a scalar or a vector. When
MaxViewAngle is a scalar, the same field of view angle is assigned to all conical sensors that you
are adding. When MaxViewAngle is a vector, the length of MaxViewAngle must equal the
number of conical sensors in the parent. Each element of MaxViewAngle is assigned to the
specified corresponding conical sensor.

3-45

3 Objects

When the AutoSimulate property of the satellite scenario is false, you can modify MaxViewAngle
while the SimulationStatus is NotStarted or InProgress.

Data Types: double

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this
property is read-only.

Access analysis objects, specified as a row vector of Access objects.

FieldOfView — Field of view objects
row vector of FieldOfView objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this
property is read-only.

Field of view objects, specified as a scalar of FieldOfView objects.

Note The properties Name, MountingLocation, MountingAngles, and MaxViewAngle can be
specified as name-value arguments in the conicalSensor object function. The size of specified
name-value pairs determines the number of conical sensors that you can specify. Refer to these
properties to understand how they must be defined when specifying multiple conical sensors.

Object Functions

aer Calculate azimuth angle, elevation angle, and range of another satellite or ground
station in NED frame
access Add access analysis objects to satellite scenario

fieldOfView Visualize field of view of conical sensor

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 21-Jun-2021 08:55:00
StopTime: 26-Jun-2021 08:55:00
SampleTime: 60
AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]

3-46

ConicalSensor

GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]

[
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
1

AutoShow:

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;

eccentricity = 0;
inclination = 50;

rightAscension0fAscendingNode

argumentOfPeriapsis = 0;

= 0;

o°

d° o° o° o°

me-

deq
deq
deq

trueAnomaly = 50;
sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0OfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [0.059 1 1]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]
LabelFontSize: 15

Add a ground station, which represents the location to be photographed, to the scenario.

gs = groundStation(sc,Name="Location to Photograph", .
Latitude=42.3001,Longitude=-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location to Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0 meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [1 0.4118 0.1608]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]

3-47

3 Objects

3-48

LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

gimbal(sat)

o
1l

g:
Gimbal with properties:

Name: Gimbal 3
ID: 3
MountingLocation: [0; 0; O] meters

MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor

conicalSensor(g,MaxViewAngle=60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis to the conical sensor between the camera and the location to be photographed.
ac = access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]

LineWidth: 3
LineColor: [0.3922 0.8314 0.0745]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

ConicalSensor

& Satellae Scenano Viewer _ o w

Bingran: Eart, Manaw. Earthotar Gadgraphes., el P G5 | Funt Cormrinty

& Jun 23 ST Ol B UTC

Joarn M 50:04 08 UTC
|

Determine the intervals during which the camera can see the geographical site.
t = accessIntervals(ac)

t=35x8 table

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location to Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location to Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location to Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location to Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location to Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location to Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location to Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location to Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location to Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location to Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location to Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location to Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location to Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location to Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location to Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location to Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

3-49

3 Objects

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667
Visualize the revisit times that the camera photographs of the location.
play(sc);

=

-
=

o 22 2071 Sonsre . M, Fartfecdar Coigrapbus, sl P (5 (st ity

AXETAT UTE
R LD L

dun PECET 00000 0l UTC = Jun 24 M 00:00:00 UTC

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | transmitter | receiver

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

3-50

FieldOfView

FieldOfView

Field of view object belonging to satellite scenario

Description

The FieldOfView object defines a field of view object belonging to a satellite scenario.

Creation

You can create a FieldOfView object using the field0fView object function of the
ConicalSensor object.

Properties

LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 O] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FFOOOO" I

"green" "g" [0 1 0] "#0OFFOO"

3-51

3 Objects

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"blue" "b" [0 0 1] "#O0OOOFF" ——

"cyan" "c" [0 11] "#OOFFFF"

"magenta" |"m" [1 0 1] "#FFOOFF" —

"yellow" fy" [1 1 0] "#FFFFOO"

"black" "K" [0 0 0] "#000000" E—

"white" w" [111] "#FFFFFF" —

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" —
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2FBE" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Example: 'blue'’
Example: [0 0 1]
Example: '#0000FF"

VisibilityMode — Visibility mode of field of view contour
"inherit' (default) | 'manual’

Visibility mode of the field of view contour, specified as one of these values:

* ‘'inherit' — Visibility of the graphic matches that of the parent
* 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide Hide satellite scenario entity from viewer

Examples
Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

3-52

FieldOfView

startTime = datetime(2021,6,21,8,55,0);

stopTime =

sampleTime = 60;

startTime + days(5);

)

% seconds

sc = satelliteScenario(startTime,stopTime,sampleTime)

SC =

satelliteScenario with properties:

StartTime:
StopTime:
SampleTime:
AutoSimulate:
Satellites:
GroundStations:
Viewers:
AutoShow:

21-Jun-2021 08:55:
26-Jun-2021 08:55:
60

1

[1x0 matlabshared.
[1x0 matlabshared.
[0x0 matlabshared.
1

00
00

satellitescenario.Satellite]
satellitescenario.GroundStation]
satellitescenario.Viewer]

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis =
eccentricity = 0;
inclination = 50;

7878137;

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis
trueAnomaly = 50;
sat =

= 0;

argumentOfPeriapsis, trueAnomaly)

sat =

Satellite with properties:

Name:

ID:
ConicalSensors:
Gimbals:
Transmitters:
Receivers:
Accesses:
GroundTrack:
Orbit:
OrbitPropagator:
MarkerColor:
MarkerSize:
ShowLabel:
LabelFontColor:
LabelFontSize:

Satellite 1

sgp4

[0.059 1 1]
6

true
[111]

15

satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0OfAscendingNode,

matlabshared.satellitescenario.ConicalSensor]
matlabshared.satellitescenario.Gimbal]
satcom.satellitescenario.Transmitter]
satcom.satellitescenario.Receiver]
matlabshared.satellitescenario.Access]
matlabshared.satellitescenario.GroundTrack]
matlabshared.satellitescenario.Orbit]

Add a ground station, which represents the location to be photographed, to the scenario.

gs = groundStation(sc,Name="Location to Photograph",

Latitude=42.3001,Longitude=-71.3504)

gs =

GroundStation with properties:

Name:
ID: 2

% degrees

Location to Photograph

3-53

o°

0° o° o° o°

me-

de
de
deq
deq

3 Objects

Latitude:
Longitude:
Altitude:
MinElevationAngle:
ConicalSensors:
Gimbals:
Transmitters:
Receivers:
Accesses:
MarkerColor:
MarkerSize:
ShowLabel:
LabelFontColor:
LabelFontSize:

42 .3 degrees

-71.35 degrees

0 meters

0 degrees

[1x0 matlabshared.satellitescenario.ConicalSensor]
[1x0 matlabshared.satellitescenario.Gimbal]
[1x0 satcom.satellitescenario.Transmitter]
[1x0 satcom.satellitescenario.Receiver]
[1x0 matlabshared.satellitescenario.Access]
[1 0.4118 0.1608]

6

true

[1 1 1]

15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

gimbal(sat)

«
Il

g:

Gimbal with properties:

Name:

ID:
MountingLocation:
MountingAngles:
ConicalSensors:
Transmitters:
Receivers:

Gimbal 3

3

[0; O; O] meters

[0; O; O] degrees

[1x0 matlabshared.satellitescenario.ConicalSensor]
[1x0 satcom.satellitescenario.Transmitter]

[1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60

degrees.

camSensor = conicalSensor(g,MaxViewAngle=60)

camSensor =

ConicalSensor with properties:

Name:

ID:
MountinglLocation:
MountingAngles:
MaxViewAngle:
Accesses:
FieldOfView:

Conical sensor 4

4

[0; O; O] meters

[0; O; O] degrees

60 degrees

[1x0 matlabshared.satellitescenario.Access]

[0x0 matlabshared.satellitescenario.Field0fView]

Add access analysis to the conical sensor between the camera and the location to be photographed.

ac = access(camSensor,gs)

ac =

Access with properties:

3-54

FieldOfView

Sequence:

[4 2]

LineWidth: 3

LineColor:

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

vV =

fieldOfView(camSensor);

a4 Satellae Ssenars Vieaer

satelliteScenarioViewer(sc);

[0.3922 0.8314 0.0745]

Ginstee Ean, Maow Eartfedle Gegrapiuid, sl T G5 e Civmrrly
Juan 4 M 50:00 08 UTC

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

Jun 23 2 000000 UTC

accessIntervals(ac)

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location to Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location to Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location to Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location to Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location to Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location to Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location to Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location to Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location to Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location to Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location to Photograph" 11 22-Jun-2021 15:50:00

3-55

3 Objects

3-56

"Conical sensor 4"
"Conical sensor 4"
"Conical sensor 4"
"Conical sensor 4"
"Conical sensor 4"

"Location
"Location
"Location
"Location
"Location

to
to
to
to
to

Calculate the maximum revisit time in hours.

startTimes = t.StartTime;
endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end)
maxRevisitTime = max(revisitTimes)

maxRevisitTime = 12.6667

Visualize the revisit times that the camera photographs of the location.

play(sc);

-
Sl

Photograph"
Photograph"
Photograph"
Photograph"
Photograph"

- endTimes(l:end-1));

S 73 HOF Sonsrre Eari, Masaw, Esrihaiar Gaopraphens. s i G5 LRt Covmmniy

RETAT LTG

Jun F2 AT 00088 UTC
\ A1 i

Version History
Introduced in R2021a

Jon 34 M 000000 UTC

12
13
14
15
16

22-Jun-2021
22-Jun-2021
22-Jun-2021
23-Jun-2021
23-Jun-2021

17:
19:
21:
10:
12:

53:
55:
58:
56:
56:

00
00
00
00
00

FieldOfView

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

3-57

3 Objects

3-58

Gimbal

Gimbal object belonging to satellite scenario

Description

The Gimbal defines a gimbal object belonging to a satellite scenario.

Creation

You can create a Gimbal object using the gimbal object function of the Satellite or
GroundStation.

Properties

Name — Gimbal name
"Gimbal idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling the Gimbal function. After you call the gimbal function,
this property is read-only.

Gimbal name, specified as a name-value argument consisting of 'Name' and a string scalar, string
vector, character vector, or a cell array of character vectors.
» Ifyou are adding only one Gimbal, specify Name as a string scalar or a character vector.

» Ifyou are adding multiple gimbals, specify Name as a string scalar, character vector, string vector,
or a cell array of character vectors. All gimbals that you add as a string scalar or a character
vector are assigned the same specified name. The number of elements in the string vector or cell
array of character vectors must equal the number of gimbals that you are adding. Each gimbal is
assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by the satellite scenario.

Data Types: char | string

ID — Gimbal ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
Gimbal ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; O] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

Gimbal

» Ifyou are adding one gimbal, the MountingLocation property is a three-element vector. The
elements specify the x, y, and z components of the Cartesian coordinates in the body frame of
gimbal.

» If you are adding multiple gimbals, the MountingLocation property can be a three-element
vector or a matrix. When specified as a vector, the same set of mounting locations are assigned to
all specified gimbals. When specified as a matrix, MountingLocation must contain three rows
and the same number of columns as the gimbals. The columns correspond to the mounting
location of each specified gimbal and the rows correspond to the mounting location coordinates in
the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountinglLocation property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll, in that
order. Yaw, pitch, and roll are positive rotations about the z-axis, intermediate y-axis, and
intermediate x-axis of the parent.

» Ifyou are adding one gimbal, the MountingAngles property is a three-element vector.

» If you are adding multiple gimbals the MountingAngles property can be a three-element vector
or a matrix. When specified as a vector, the same set of mounting angles are assigned to all
specified gimbals. When specified as a matrix, MountingAngles must contain three rows and the
same number of columns as the gimbals. The columns correspond to the mounting angles of each
specified gimbal and the rows correspond to the yaw, pitch, and roll angles in the parent body
frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Example: [0; 30; 60]
Data Types: double

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling the conicalSensor. After you call the conicalSensor
function, this property is read-only.

Conical sensors attached to the Gimbal, specified as a row vector of conical sensors.

Transmitters — Transmitters attached to Gimbal
row vector of Transmitter objects

You can set this property only when calling transmitter function. After you call the transmitter
function, this property is read-only.

3-59

3 Objects

3-60

Transmitters attached to the Gimbal, specified as a row vector of Transmitter objects.

Receivers — Receivers attached to the satellite
row vector of Receiver objects

You can set this property only when calling the receiver. After you call the receiver function, this
property is read-only.

Receivers attached to the satellite, specified as a row vector of Receiver objects.

Object Functions

aer Calculate azimuth angle, elevation angle, and range of another satellite or ground
station in NED frame

conicalSensor Add conical sensor to satellite scenario

gimbalAngles Steering angles of gimbal

pointAt Point satellite at target

receiver Add receiver to satellite scenario
transmitter Add transmitter to satellite scenario
Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sC =
satelliteScenario with properties:

StartTime: 21-Jun-2021 08:55:00
StopTime: 26-Jun-2021 08:55:00

SampleTime: 60

AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
Viewers: [0x0 matlabshared.satellitescenario.Viewer]

AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;

eccentricity = 0;

inclination = 50;

rightAscensionOfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 50;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

o°

o® o of o°

me-

de
de
de
de

Gimbal

sat =

Satellite with properties:

Name:

ID:
ConicalSensors:
Gimbals:
Transmitters:
Receivers:
Accesses:
GroundTrack:
Orbit:
OrbitPropagator:
MarkerColor:
MarkerSize:
ShowlLabel:
LabelFontColor:
LabelFontSize:

Satellite 1

matlabshared.satellitescenario.ConicalSensor]
matlabshared.satellitescenario.Gimbal]
satcom.satellitescenario.Transmitter]
satcom.satellitescenario.Receiver]
matlabshared.satellitescenario.Access]
matlabshared.satellitescenario.GroundTrack]
matlabshared.satellitescenario.Orbit]

sgp4

[0.059 1 1]

6

true

[11 1]

15

Add a ground station, which represents the location to be photographed, to the scenario.

gs = groundStation(sc,
Latitude=42.3001,Longitude=-71.3504)

gs =

Name="Location to Photograph",
% degrees

GroundStation with properties:

Name:

ID:

Latitude:
Longitude:
Altitude:
MinElevationAngle:
ConicalSensors:
Gimbals:
Transmitters:
Receivers:
Accesses:
MarkerColor:
MarkerSize:
ShowLabel:
LabelFontColor:
LabelFontSize:

Location to Photograph

2

42 .3 degrees

-71.35 degrees

0 meters

0 degrees

[1x0 matlabshared.satellitescenario.ConicalSensor]
[1x0 matlabshared.satellitescenario.Gimbal]

[1x0 satcom.satellitescenario.Transmitter]

[1x0 satcom.satellitescenario.Receiver]

[1x0 matlabshared.satellitescenario.Access]

[1 0.4118 0.1608]

6
true
[11
15

1]

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

gimbal(sat)

«
Il

g:

Gimbal with properties:

Name:

ID:
MountinglLocation:
MountingAngles:
ConicalSensors:
Transmitters:

Gimbal 3

3

[0; O; O] meters

[0; O0; O] degrees

[1x0 matlabshared.satellitescenario.ConicalSensor]
[1x0 satcom.satellitescenario.Transmitter]

3-61

3 Objects

3-62

Receivers:

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60

degrees.

camSensor

camSensor =

[1x0 satcom.satellitescenario.Receiver]

conicalSensor(g,MaxViewAngle=60)

ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; 0] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis to the conical sensor between the camera and the location to be photographed.
ac = access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]
LineWidth: 3
LineColor: [0.3922 0.8314 0.0745]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

Gimbal

s Satellde Scenamd Viewer

Bingran: Eart, Manaw. Earthotar Gadgraphes., el P G5 | Funt Cormrinty
Sy M M B0:00:00 UTC
|

Jun 23 ST Ol B UTC

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

accessIntervals(ac)

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location to Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location to Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location to Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location to Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location to Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location to Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location to Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location to Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location to Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location to Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location to Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location to Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location to Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location to Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location to Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location to Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

3-63

3 Objects

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667
Visualize the revisit times that the camera photographs of the location.
play(sc);

=

-
=

o 22 2071 Sonsre . M, Fartfecdar Coigrapbus, sl P (5 (st ity

AXETAT UTE
R LD L

dun PECET 00000 0l UTC = Jun 24 M 00:00:00 UTC

Version History
Introduced in R2021a
See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions

show | play | hide | satellite | access | groundStation | conicalSensor | transmitter |
receiver

Topics

“Satellite Scenario Key Concepts”

3-64

Gimbal

“Satellite Scenario Basics”

3-65

3 Objects

GroundTrack

Ground track object belonging to satellite in scenario

Description

GroundTrack defines a ground track object belonging to a satellite in a scenario.

Creation

You can create a GroundTrack object using the groundTrack object function of the Satellite
object.

Properties

LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as 'LeadTime"
and a positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as 'TrailTime' and a
positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as 'LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet|string scalar of color name | character
vector of color name

Color of the future ground track line, specified as 'LeadLineColor' and an RGB triplet, a
hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case

3-66

GroundTrack

sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FF0000" —

"green" "g" [0 1 0] "#OOFFOO"

"blue" "b" [0 0 1] "#OOOOFF" —

"cyan" "c" [0 1 1] "#OOFFFF"

"magenta" "m" [1 0 1] "#FFOOFF" []

"yellow" ty" [110] "#FFFFOO"

"black" K" [0 0 0] "#000000" —

"white" "W [11 1] "#FFFFFF" —

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Example: 'blue’

Example: [0

0 1]

Example: '#0000FF"

TrailLineColor — Color of ground track line history
[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as 'TrailLineColor' and an RGB triplet, a
hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

3-67

3 Objects

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" " [1 0 0] "#FFOO00" I

"green" "g" [0 1 0] "#OOFFOO"

"blue" "b" [0 0 1] "#O0OOOFF" I

“cyan" 'c" [0 1 1] "#OOFFFF"

"magenta" "m" [1 0 1] "#FFOOFF" I

"yellow" "y [11 0] "#FFFFOO"

"black" k" [0 0 O] "#000000" I

"white" w" [1 1 1] "#FFFFFF" —

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7TE2FBE" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Example: 'blue’
Example: [0 0 1]
Example: '#0000FF'

VisibilityMode — Visibility mode of ground track
"inherit' (default) | 'manual’

Visibility mode of the ground track, specified as either one of these values:

* ‘'inherit' — Visibility of the graphic matches that of the parent.
* 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent.

3-68

GroundTrack

Object Functions
show Show object in satellite scenario viewer
hide Hide satellite scenario entity from viewer

Examples

Add Ground Track to Satellite in Geosynchronous Orbit

Create a satellite scenario object.

startTime = datetime(2020,5,10);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Calculate the semimajor axis of the geosynchronous satellite.

earthAngularVelocity = 0.0000729211585530; % rad/s
orbitalPeriod = 2*pi/earthAngularVelocity; % seconds
earthStandardGravitationalParameter = 398600.4418e9; % m~3/s"2

semiMajorAxis = (earthStandardGravitationalParameter*((orbitalPeriod/(2*pi))~2))"(1/3);
Define the remaining orbital elements of the geosynchronous satellite.

eccentricity = 0;

inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

Add the geosynchronous satellite to the scenario.

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...
argumentOfPeriapsis, trueAnomaly, "OrbitPropagator", "two-body-keplerian", "Name","GEO Sat")

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

3-69

3 Objects

4 Satellie Scenans Viewer o x

-

S0 I,
;“F‘"‘m towre [, Maxw, | arhete Caograghurn, snd S G s Gommunty

\ Al e FNM!}‘H‘.‘ . I.l.q-i!“NHIIEdMMUT{: Hq1-l!‘d!‘¢|{ﬂﬁﬂdl.lfﬂ

Add a ground track of the satellite to the visualization and adjust how much of the future and history
of the ground track to display.

leadTime = 2*24*3600; % seconds
trailTime = leadTime;
gt = groundTrack(sat,"LeadTime", leadTime,"TrailTime",trailTime)

gt =
GroundTrack with properties:

LeadTime: 172800
TrailTime: 172800
LineWidth: 1

LeadLineColor: [1 1 0.0670]
TrailLineColor: [1 1 0.0670]
VisibilityMode: 'inherit'

Visualize the satellite movement and its trace on the ground. The satellite covers the area around
Japan during one half of the day and Australia during the other half.

play(sc);

3-70

GroundTrack

& Satellae Scenarmd Viewer = o

Souroe: L, “.I.n.l'i :'lu.hl Ceographes, and T GE User Commanity
| FMM!_ITE oy By 13 2050 88 Gd008 UTC Ry 14 000 B8 S04 LT
i it | |

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | groundStation | access | hide | satellite

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

3-71

3 Objects

3-72

GroundStation

Ground station object belonging to satellite scenario

Description

The GroundStation object defines a ground station object belonging to a satellite scenario.

Creation

You can create GroundStation object using the groundStation object function of the
satelliteScenario object.

Properties

Name — GroundStation name
"GroundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the groundStation function. After you call
groundStation function, this property is read-only.

GroundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

» If only one GroundStation is added, specify Name as a string scalar or a character vector.

» If multiple GroundStations are added, specify Name as a string scalar, character vector, string
vector or a cell array of character vectors. All GroundStations added as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vector must equal the number of GroundStations being added.
Each GroundStation is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by satellite scenario.

Data Types: char | string

ID — GroundStation ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
GroundStation ID assigned by the simulator, specified as a positive scalar.

Latitude — Geodetic latitude of ground stations
42 .3001 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

GroundStation

» Ifyou add only one ground station, specify Latitude as a scalar double.

» Ifyou add multiple ground stations, specify Latitude as a vector double whose length is equal to
the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified

as a name-value argument takes precedence.

Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range

[-180, 180].

* Ifyou add only one ground station, specify longitude as a scalar.

» Ifyou add multiple ground stations, specify longitude as a vector whose length is equal to the
number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to GroundStation, longitude

specified as a name-value argument takes precedence.

Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Altitude of ground stations, specified as a scalar or a vector.

» Ifyou specify Altitude as a scalar, the value is assigned to each ground station in the
GroundStation.

» Ifyou specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the GroundStation.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified

as a name-value argument takes precedence.

Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, and for
the ground station to be visible from the satellite in degrees, specified as a scalar or row vector.
Values must be in the range [-90, 90]. For access and link closure to be possible, the elevation angle
must be at least equal to the value specified in MinElevationAngle.

» Ifyou specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
GroundStation.

3-73

3 Objects

3-74

» Ifyou specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the GroundStation.

When the AutoSimulate property of the satellite scenario is false, MinElevationAngle property
can be modified while the SimulationStatus is NotStarted or InProgress.

Data Types: double

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Access analysis objects, specified as a row vector of Access objects.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling the conicalSensor. After you call the conicalSensor
function, this property is read-only.

Conical sensors attached to the GroundStation, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the GroundStation, specified as the comma-separated pair consisting of
'Gimbals' and a row vector of Gimbal objects.

Transmitters — Transmitters attached to GroundStation
row vector of Transmitter objects

You can set this property only when calling transmitter function. After you call the transmitter
function, this property is read-only.

Transmitters attached to the GroundStation, specified as a row vector of Transmitter objects.

Receivers — Receivers attached to the satellite
row vector of Receiver objects

You can set this property only when calling the receiver. After you call the receiver function, this
property is read-only.

Receivers attached to the satellite, specified as a row vector of Receiver objects.

MarkerColor — Color of marker
[1 0 O] (default) | RGB triplet |string scalar of color name | character vector of
color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

GroundStation

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FF0000" —

"green" "g" [0 1 0] "#OOFF0O"

"blue" "b" [0 0 1] "#OOOOFF" —

"cyan" "c" [0 11] "#OOFFFF"

"magenta" |"m" [1 0 1] "#FFOOFF" —

"yellow" ty" [110] "#FFFFOO"

"black" "K" [0 0 0] "#000000" —

"white" w" [111] "#FFFFFF" I—

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots.

RGB Triplet Hexadecimal Color Code Appearance

[0 0.4470 0.7410] "#0072BD" —

[0.8500 0.3250 0.0980] "#D95319" —

[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E" —

[0.4660 0.6740 0.1880] "#77AC30" —

[0.3010 0.7450 0.9330] "#4ADBEEE"

[0.6350 0.0780 0.1840] "#A2142F" —

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real

positive scalar less than 30. The unit is in pixels.

ShowLabel — State of GroundStation label visibility
true or 1 (default) | falseor®

State of GroundStation label visibility, specified as a comma-separated pair consisting of

'ShowLabel' and numerical or logical value of 1 (true) or 0 (false).

3-75

3 Objects

Data Types: logical

LabelFontSize — Font size of GroundStation label
15 (default) | positive scalar in the range [6 30]

Font size of the GroundStation label, specified as a comma-separated pair consisting of
"LabelFontSize' and a positive scalar in the range [6 30].

LabelFontColor — Font color of GroundStation label
[1,0,0] (default) | RGB triplet |string scalar of color name | character vector of
color name

Font color of the GroundStationlabel, specified as a comma-separated pair consisting of
"LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FF0000" —

"green” "g" [0 10] "#OOFF00"

"blue" "b" [0 0 1] "#OOOOFF" I

"cyan" "c" [0 11] "#OOFFFF"

"magenta" |"m" [1 0 1] "#FFOOFF" —

"yellow" "y [110] "#FFFFOO"

"black" "K" [0 0 0] "#000000" ——

"white" fw" [111] "#FFFFFF" —

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

3-76

GroundStation

RGB Triplet Hexadecimal Color Code Appearance
[0.4940 0.1840 0.5560] "#7TE2FBE" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Object Functions

access Add access analysis objects to satellite scenario

conicalSensor Add conical sensor to satellite scenario

transmitter Add transmitter to satellite scenario

receiver Add receiver to satellite scenario

gimbal Add gimbal to satellite or ground station

show Show object in satellite scenario viewer

aer Calculate azimuth angle, elevation angle, and range of another satellite or ground
station in NED frame

hide Hide satellite scenario entity from viewer

Examples

Add Ground Stations to Scenario and Visualize Access Intervals

Create a satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020,5,1,11,36,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime, sampleTime);
lat 10;

lon -30;

gs = groundStation(sc,lat,lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 10;

rightAscension0OfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscension0OfAscendingNode,argumentOfPeriapsis, trueAnomaly) ;

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat,gs);
intvls = accessIntervals(ac)

intvls=8x8 table
Source Target IntervalNumber StartTime

EndTil

3-77

3 Objects

3-78

"Satellite 2" "Ground station 1" 1 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

+ Sotellte Scenang Viewer [m]

Ry 1
800 IS

TN

Souros: L, Maxar, Earfuter Caograghcs,

i TS0 UTE
|

P oty

By 1 M 1E 000
|

Version History

Introduced in R2021a

See Also

Objects

satelliteScenario | satelliteScenarioViewer

Functions

show | play | hide | satellite | access | groundStation | conicalSensor | transmitter |

receiver

Wiy 3) O 00 00 LT
|

Mary 2 M0 06 00 00 UTC

11:
14:
17:
20:
23:
02:
05:
09:

36:
20:
27:
34:
41:
50:
59:
06:

00
00
00
00
00
00
00
00

01-May-2020
01-May-2020
01-May-2020
01-May-2020
02-May-2020
02-May-2020
02-May-2020
02-May-2020

GroundStation

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

3-79

3 Objects

Link

Link analysis object belonging to Transmitter

Description

The Link object defines a link analysis object belonging to Transmitter.

Creation

You can create a Link object using the 1ink object function of the Transmitter or Receiver
objects.

Properties

Sequence — Transmitter or receiver ID
vector of positive numbers

You can set this property only when calling Link. After you call Link, this property is read-only.
Transmitter or receiver ID, specified as a vector of positive numbers.

LineWidth — Visual width of link line
1 (default) | scalar in the range (0 10]

Visual width of link line in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of link line
[0 1 0] (default) | RGB triplet |string scalar of color name | character vector of
color name

Color of the link line, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

3-80

Link

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" trt [1 0 0] "#FFOOOO" —

"green" "g" [0 1 0] "#0OOFFOO"

"blue" "b" [0 0 1] "#0OOOFF" ——

"cyan" "c" [0 1 1] "#OOFFFF"

“magenta" "m" [1 0 1] "#FFOOFF" I

"yellow" ty" [11 0] "#FFFFOO"

"black" "K" [0 0 0] "#000000" E—

"white" w" [111] "#FFFFFF"]

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots.

RGB Triplet Hexadecimal Color Code Appearance

[0 0.4470 0.7410] "#0072BD" I

[0.8500 0.3250 0.0980] "#D95319" I

[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2FBE" I

[0.4660 0.6740 0.1880] "#77AC30" I

[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Example: 'blue'’

Example: [0 0 1]

Example: '#0000FF'

Object Functions
Eb/No at final node of link

ebno

linkPercentage

linkIntervals
linkStatus
show
sigstrength
hide

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Intervals during which link is closed

Status of link closure between first and last node

Show object in satellite scenario viewer

Calculate received signal strength at last node of link

Hide satellite scenario entity from viewer

Create a satellite scenario object.

Percentage of time when link between first and last node in link analysis is closed

3-81

3 Objects

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020

SampleTime: 60

AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
Viewers: [0x0 matlabshared.satellitescenario.Viewer]

AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000; % met
eccentricity = 0;
inclination = 60; % deg!
rightAscension0fAscendingNode = 0; % deg
argumentOfPeriapsis = 0; % deg
trueAnomaly = 0; % deg!
sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0OfAscendingNode, .
argumentOfPeriapsis, trueAnomaly,Name="Satellite");
Add gimbals to the satellite. These gimbals enable the satellite receiver antenna to steer to the first
ground station, and its transmitter antenna to steer to the second ground station.
gimbalrxSat = gimbal(sat);
gimbaltxSat = gimbal(sat);
Add a receiver to the first gimbal of the satellite.
gainToNoiseTemperatureRatio = 5; % dB/K
systemLoss = 3; % dB
rxSat = receiver(gimbalrxSat,Name="Satellite Receiver",GainToNoiseTemperatureRatio= ...
gainToNoiseTemperatureRatio,SystemLoss=systemLoss)
rxSat =
Receiver with properties:
Name: Satellite Receiver
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; O; O] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
PreReceiverLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels
Add a transmitter to the second gimbal of the satellite.
frequency = 27e9; % Hz
power = 20; % dBW

3-82

Link

bitRate = 20;

systemLoss = 3;

txSat = transmitter(gimbaltxSat,Name="Satellite Transmitter",Frequency=frequency,
power=power,BitRate=bitRate,SystemLoss=systemLoss)

o o°

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 5
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; O] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters

apertureEfficiency = 0.5;
gaussianAntenna(txSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);
gaussianAntenna(rxSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,Name="Ground Station 1");

latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude,Name="Ground Station 2");

Point gimbals of the satellite towards the two ground stations for the simulation duration.

pointAt(gimbaltxSat,gs2);
pointAt(gimbalrxSat,gsl);

Add gimbals to the ground stations. These gimbals enable the ground station antennas to steer
towards the satellite.

gimbalgsl
gimbalgs2

gimbal(gsl);
gimbal(gs2);

Add a transmitter to ground station gs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalgsl,Name="Ground Station 1 Transmitter",Frequency=frequency,
Power=power,BitRate=bitRate);

Add a receiver to ground station gs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalgs2,Name="Ground Station 2 Receiver",RequiredEbNo=requiredEbNo);

Define the antenna specifications of the ground stations.

3-83

o® o° of

=Q T

S =

3 Objects

dishDiameter = 5; % meters
gaussianAntenna(txGsl,DishDiameter=dishDiameter);
gaussianAntenna(rxGs2,DishDiameter=dishDiameter);

Point gimbals of the ground stations towards the satellite for the simulation duration.

pointAt(gimbalgsl,sat);
pointAt(gimbalgs2,sat);

Add link analysis to transmitter txGs1.

lnk

link(txGsl, rxSat, txSat, rxGs2)

lnk =
Link with properties:

Sequence: [10 4 5 11]

LineWidth: 2
LineColor: [0.3922 0.8314 0.0745]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)
ans=4x8 table
Source Target IntervalNumber Star
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov-20
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov-20
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov-20
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov-20

Visualize the link by using the Satellite Scenario Viewer.

play(sc);

3-84

Link

"“-_ Ground Station 2

-
Sl

Phors 25 2000

OIS UTE

4 11 »

Fingtran” o, M Earthetar Caigiapiuis., sl P G5 | Punt Cormrirnty

B B8 UTC Fﬁmﬂ!"ﬂl‘d 5 B 0 LITC How 35 2020 13 60:08 UTC Here 25 7ECHD 1800 &3 UTC Mo 26 M
Al | | |

Version History
Introduced in R2021a

sigstrength object function added to the object

You can now compute the received signal strength at the last node of the link using sigstrength
object function.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | groundStation | transmitter | receiver

Topics

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

3-85

3 Objects

3-86

Receiver

Receiver object belonging to satellite scenario

Description

The Receiver object defines a receiver object function belonging to the satellite scenario.

Creation

You can create Receiver object using the receiver object function of the Satellite,
GroundStation, or Gimbal object.

Properties

Name — Receiver nhame
"Receiver idx" (default) | string scalar | string vector
vectors

character vector | cell array of character

You can set this property only when calling the receiver function. After you call the receiver
function, this property is read-only.

Receiver name, specified as a name-value argument consisting of 'Name' and a string scalar, string
vector, character vector, or a cell array of character vectors.
» Ifyou are adding only one receiver, specify Name as a string scalar or a character vector.

» Ifyou are adding multiple receivers, specify Name as a string scalar, character vector, string
vector, or a cell array of character vectors. All receivers that you add as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vectors must equal the number of receivers that you are adding.
Each receiver is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by the satellite scenario.

Data Types: char | string

ID — Receiver ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
Receiver ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; O] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

Receiver

» Ifyou are adding one receiver, MountinglLocation is a three-element vector. The elements
specify the x, y, and z components of the Cartesian coordinates in the body frame of receiver.

» Ifyou are adding multiple receivers, MountingLocation can be a three-element vector or a
matrix. When specified as a vector, the same set of mounting locations are assigned to all specified
receivers. When specified as a matrix, MountingLocation must contain three rows and the same
number of columns as the receivers. The columns correspond to the mounting location of each
specified receiver and the rows correspond to the mounting location coordinates in the parent
body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountinglLocation property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll, in that
order. Yaw, pitch, and roll are positive rotations about the z-axis, intermediate y-axis, and
intermediate x-axis of the parent.

» Ifyou are adding one receiver, the MountingAngles property is a three-element vector.

» Ifyou are adding multiple receivers the MountingAngles property can be a three-element vector
or a matrix. When specified as a vector, the same set of mounting angles are assigned to all
specified receivers. When specified as a matrix, MountingAngles must contain three rows and
the same number of columns as the receivers. The columns correspond to the mounting angles of
each specified receiver and the rows correspond to the yaw, pitch, and roll angles in the parent
body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Example: [0; 30; 60]
Data Types: double

Antenna — Antenna object associated with Receiver
scalar | vector

Antenna object associated with the receiver, specified as either a scalar or a vector. This object can
be the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array System
Toolbox. The default Gaussian antenna has a dish diameter of 1 meter and an aperture efficiency of
0.65.

Antenna can be specified in receiver as a name-value argument consisting of 'Antenna' and a
scalar, antenna or phased array objects.

» Ifyou are adding only one receiver, Antenna must be a scalar.

» Ifyou are adding multiple receivers, Antenna as a vector. The same antenna is assigned to all
receivers.

3-87

3 Objects

3-88

SystemLoss — System loss in receiver
5 (default) | scalar | vector

System loss in dB, specified as a scalar or a vector. SystemLoss must be greater than or equal to
PreReceiverLoss.

System loss can be specified in receiver function as a name-value argument consisting of
'SystemLoss' and a scalar, or a vector.

» Ifyou are adding only one receiver, SystemLoss is a scalar.

* Ifyou are adding multiple receivers, SystemLoss is a scalar or a vector. When SystemLoss is a
scalar, the same SystemLoss is assigned to all receivers. When SystemLoss is a vector, its
length must equal the number of receivers and each element of SystemLoss is assigned to the
corresponding receivers in the parent.

If you specify PreReceiverlLoss property as a name value argument in receiver function , the
default value is the greater of 5 dB and the specified PreReceiverlLoss value.

When the AutoSimulate property of the satellite scenario is false, you can modify the
SystemLoss value while SimulationStatus is NotStarted or InProgress.

PreReceiverLoss — Pre-receiver loss
3 (default) | scalar | vector

Pre-receiver loss in dB, specified as a scalar or a vector. This is the total loss before the receiver input
in the receiver system, such as feeder loss, radome loss, and loss due to polarization mismatch.
PreReceiverLoss must be less than or equal to SystemLoss.

Pre-receiver loss can be specified in receiver function as a name-value pair consisting of
'PreReceiverLoss' and a scalar, or a vector.

» Ifyou are adding only one receiver, PreReceiverlLoss is a scalar.

* Ifyou are adding multiple receivers, PreReceiverlLoss is a scalar or a vector. When
PreReceiverlLoss is a scalar, the same PreReceiverLoss is assigned to all receivers. When
PreReceiverlLoss is a vector, its length must equal the number of receivers and each element of
PreReceiverlLoss is assigned to the corresponding receivers in the parent.

If you specify SystemLoss property as a name value argument in receiver function , the default
value is the lesser of 3 dB and the specified SystemLoss value.

When the AutoSimulate property of the satellite scenario is false, you can modify the
PreReceiverlLoss value while SimulationStatus is NotStarted or InProgress.

GainToNoiseTemperatureRatio — Gain to noise temperature ratio
3 (default) | scalar | vector

Gain to noise temperature ratio of the antenna in dB per Kelvin, specified as the name-value
argument consisting of 'GainToNoiseTemperatureRatio' and a scalar or a vector.

» If you are adding only one receiver, GainToNoiseTemperatureRatio is a scalar.

» Ifyou are adding multiple receivers, GainToNoiseTemperatureRatio is a scalar, or a vector.
When GainToNoiseTemperatureRatio is a scalar, the same GainToNoiseTemperatureRatio
is assigned to all receivers. When GainToNoiseTemperatureRatio is a vector, its length must

Receiver

equal the number of receivers and each element of GainToNoiseTemperatureRatio is assigned
to the corresponding receiver in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the
GainToNoiseTemperatureRatio value while SimulationStatus is NotStarted or
InProgress.

RequiredEbNo — Minimum Eb/No necessary for link closure
10 (default) | scalar | vector

Minimum energy per bit to noise power spectral density ratio (Eb/No) necessary for link closure in
dB, specified as the name-value pair consisting of 'RequiredEbNo' and a scalar or a vector.

* Ifyou are adding only one receiver, RequiredEbNo is a scalar.

» Ifyou are adding multiple receivers, RequiredEbNo is a scalar or a vector. When RequiredEbNo
is a scalar, the same RequiredEbNo is assigned to all receivers. When RequiredEbNo is a vector,
its length must equal the number of receivers and each element of RequiredEbNo is assigned to
the corresponding receiver in the parent.

When the AutoSimulate property of the satellite scenario is false, the RequiredEbNo property
can be modified while SimulationStatus is NotStarted or InProgress.

Note The above properties except ID can be specified as name-value arguments in receiver. The
size of specified name-value pairs determines the number of receivers specified. Refer to these
properties to understand how they must be defined when specifying multiple receivers.

Object Functions

aer Calculate azimuth angle, elevation angle, and range of another satellite or ground
station in NED frame

gaussianAntenna Add Gaussian antennas

pattern Plot 3-D radiation pattern of antenna
pointAt Point satellite at target
Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sC =
satelliteScenario with properties:

StartTime: 25-Nov-2020

StopTime: 26-Nov-2020
SampleTime: 60
AutoSimulate: 1

3-89

3 Objects

3-90

Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
Viewers: [0x0 matlabshared.satellitescenario.Viewer]

AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 60;

rightAscensionOfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0OfAscendingNode,
argumentOfPeriapsis,trueAnomaly,Name="Satellite");

Add gimbals to the satellite. These gimbals enable the satellite receiver antenna to steer to the first
ground station, and its transmitter antenna to steer to the second ground station.

gimbalrxSat
gimbaltxSat

gimbal(sat);
gimbal(sat);

Add a receiver to the first gimbal of the satellite.

gainToNoiseTemperatureRatio = 5;

systemLoss = 3;

rxSat = receiver(gimbalrxSat,Name="Satellite Receiver",GainToNoiseTemperatureRatio= ...
gainToNoiseTemperatureRatio,SystemLoss=systemLoss)

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 4
MountingLocation: [0; O; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
SystemLoss: 3 decibels
PreReceiverLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Add a transmitter to the second gimbal of the satellite.

frequency = 27e9;

power = 20;

bitRate = 20;

systemLoss = 3;

txSat = transmitter(gimbaltxSat,Name="Satellite Transmitter",Frequency=frequency,
power=power,BitRate=bitRate,SystemLoss=systemlLoss)

o® o° o° of

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 5
MountingLocation: [0; 0; 0] meters

% met
% deg
% deg
% deg
% deg

% dB/K

% dB

Hz

dBw

Mbps

dB

Receiver

MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz
BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters

apertureEfficiency = 0.5;
gaussianAntenna(txSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);
gaussianAntenna(rxSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,Name="Ground Station 1");

latitude = 52.2294963; %
longitude = 0.1487094; %
gs2 = groundStation(sc,latitude, longitude,Name="Ground Station 2");

egrees
egrees

d
d
Point gimbals of the satellite towards the two ground stations for the simulation duration.

pointAt(gimbaltxSat,gs2);
pointAt(gimbalrxSat,gsl);

Add gimbals to the ground stations. These gimbals enable the ground station antennas to steer
towards the satellite.

gimbalgsl
gimbalgs2

gimbal(gsl);
gimbal(gs2);

Add a transmitter to ground station gs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalgsl,Name="Ground Station 1 Transmitter",Frequency=frequency,
Power=power,BitRate=bitRate);

Add a receiver to ground station gs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalgs2,Name="Ground Station 2 Receiver",RequiredEbNo=requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,DishDiameter=dishDiameter);
gaussianAntenna(rxGs2,DishDiameter=dishDiameter);

Point gimbals of the ground stations towards the satellite for the simulation duration.

pointAt(gimbalgsl,sat);
pointAt(gimbalgs2,sat);

Add link analysis to transmitter txGs1.

3-91

o® o o°

=Q T

=

e,

3 Objects

lnk = link(txGsl, rxSat,txSat, rxGs2)

lnk =
Link with properties:

Sequence: [10 4 5 11]

LineWidth: 2
LineColor: [0.3922 0.8314 0.0745]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(1lnk)
ans=4x8 table
Source Target IntervalNumber Star
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov-20:

Visualize the link by using the Satellite Scenario Viewer.

play(sc);

Somare Ean, Mass Eartfeter opograpturs, sl Pa L5 L Comemssty

000008 UTC ﬂpuv}i;"ﬂ]‘ﬂ 0 S 00 LITC Now 35 2020 17 0000 UTC Mo 25 7000 1800 03 UTC Mo 26 000
Al | | |

3-92

Receiver

Version History
Introduced in R2021a

PreReceiverLoss property added to the object

You can now specify the pre-receiver loss in dB using the PreReceiverLoss property.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
groundStation | link | play | transmitter

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

3-93

3 Objects

3-94

satelliteScenario

Satellite scenario

Description

The satelliteScenario object represents a 3D arena consisting of satellites, ground stations, and
the interactions between them. Use this object to model satellite constellations, model ground station
networks, perform access analyses between the satellites and the ground stations, and visualize the
results.

Creation

Syntax

sc = satelliteScenario

sc = satelliteScenario(startTime,stopTime,sampleTime)
sc = satelliteScenario(_ , 'AutoSimulate'=false)
Description

sc = satelliteScenario creates a default satellite scenario object.

sc = satelliteScenario(startTime,stopTime,sampleTime) sets the StartTime,
StopTime, and SampleTime properties to the values of startTime, stopTime, and sampleTime,
respectively.

sc = satelliteScenario(, 'AutoSimulate'=false) sets the AutoSimulate property to
a specified value.

Properties

StartTime — Start time of satellite scenario simulation in UTC
datetime scalar

Start time of the satellite scenario simulation in UTC, specified as a datetime scalar.

The default StartTime is the current UTC time if no satellites are present in the scenario.
Otherwise, it is the earliest value among

* the current UTC time.

* the epoch defined in the TLE files.

» the reference time deduced from the GPS week number defined in SEM files.

* the earliest time deduced from RINEX navigation data for GPS and Galileo.

* the initial time in the timetable and timeseries.

If the StartTime, StopTime, or SampleTime properties are explicitly specified, the StartTime
property no longer updates with further additions of satellites.

satelliteScenario

When the AutoSimulate property is false, you can modify the StartTime property only when the
SimulationStatus is NotStarted. You can use the restart function to reset
SimulationStatus to NotStarted, but doing so erases the simulation data.

Data Types: datetime

StopTime — Stop time of satellite scenario simulation in UTC
datetime scalar

Stop time of the satellite scenario simulation in UTC, specified as a datetime scalar. The default
StopTime is StartTime + longest orbital period among the satellites in the scenario. If no satellites
are added to the scenario, the default StopTime is the same as the default StartTime. If the
StartTime, StopTime, or SampleTime properties are explicitly specified, the StopTime property
no longer updates with further additions of satellites.

When the AutoSimulate property is false, you can modify the StopTime property only when the
SimulationStatus is NotStarted. You can use the restart function to reset
SimulationStatus to NotStarted, but doing so erases the simulation data.

Data Types: datetime

SampleTime — Sample time of satellite scenario simulation
scalar

Sample time of the satellite scenario simulation, specified as a real-valued scalar. The default sample
time is set such that there are 100 samples between StartTime and StopTime. If the default
StartTime and StopTime are the same, which is the case when no satellites are added to the
scenario, the default SampleTime is 60 seconds. If the StartTime, StopTime, or SampleTime
properties are explicitly specified, the SampleTime property no longer updates with further additions
of satellites.

When the AutoSimulate property is false, you can modify the SampleTime property only when
the SimulationStatus is NotStarted. You can use the restart function to reset
SimulationStatus to NotStarted, but doing so erases the simulation data.

Data Types: double

SimulationTime — Simulation time of satellite scenario in UTC
current UTC time (default) | datetime scalar

This property is read-only.

Current simulation time of the satellite scenario simulation in UTC, specified as a datetime scalar.
Call the restart function to reset the time to StartTime.

Dependencies

To enable this property, set AutoSimulate to false.

Data Types: datetime

SimulationStatus — Simulation status
'NotStarted' (default) | 'InProgress' | 'Completed'’

This property is read-only.

Simulation status of the satellite scenario, specified as one of the following:

3-95

3 Objects

3-96

*+ 'NotStarted' — No call to the advance function has been made
* 'InProgress' — Simulation is running
* 'Completed' — Simulation is finished

The simulation starts when the first call to the advance function is made. The simulation continues
until one of the following occurs:

* The simulation reaches the StopTime.

* A new asset is added to the satellite scenario.

» Certain properties of the asset (satellites, ground stations, gimbals, conical sensors, and so on)
have been modified, such as MountinglLocation or MountingAngles. Refer to the properties to
determine if modifying them can stop the simulation.

Call the restart function to restart the simulation, erase the simulation data, and set
SimulationStatus to NotStarted.

Dependencies
To enable this property, set AutoSimulate to false.

AutoSimulate — Option to simulate satellite scenario automatically
true or 1 (default) | false or 0

Option to simulate the satellite scenario automatically, specified as one of these numeric or logical
values.

* 1 (true) — Simulate the satellite scenario automatically on any call to an analysis function, such
as states or accessIntervals.
* 0 (false)— Simulate the satellite scenario only by calling the advance function.

Changing the AutoSimulate value erases the previous simulation data.

Data Types: double

Satellites — Satellites in the scenario
row vector of Satellite objects

Satellites in the scenario, returned as a row vector of Satellite objects. To create a Satellite
object and add it to the satellite scenario, use the satellite object function. After adding satellites
to the scenario, this property is read-only.

GroundStations — Ground stations in scenario
row vector of GroundStation objects

Ground stations in the scenario, returned as a row vector of GroundStation objects. To create a
GroundStation object and add it to the satellite scenario, use the groundStation object function.
After adding ground stations to the scenario, this property is read-only.

Autoshow — Option to automatically show graphics
true or 1 (default) | falseor ©

Option to automatically show graphics, specified as a logical 1 (true) or 0 (false). This property
determines if entities added to the scenario are automatically shown in an open
satelliteScenarioViewer window.

satelliteScenario

Object Functions

groundStation Add ground station to satellite scenario

satellite Add satellites to satellite scenario
satelliteScenarioViewer Create viewer for satellite scenario

advance Move simulation forward by one sample time
restart Restart simulation from beginning

play Play satellite scenario simulation results on viewer
Examples

Create Satellite Scenario with Custom Start and Stop Times

Specify the start time in the current time zone as yesterday. The simulation lasts for half a day.

startTime = datetime("yesterday","TimeZone","local");
stopTime = startTime + days(0.5);

Specify the sample time as 60 seconds. Create a satellite scenario object, specifying the start time,
stop time, and sample time.

sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 30-Aug-2022 04:00:00
StopTime: 30-Aug-2022 16:00:00

SampleTime: 60

AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]

Viewers: [0x0 matlabshared.satellitescenario.Viewer]
AutoShow: 1

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000;15000000];
eccentricity = [0.01;0.02];

inclination = [0;10];
rightAscensionOfAscendingNode = [0;15];
argumentOfPeriapsis = [0;30];

3-97

3 Objects

3-98

trueAnomaly = [0;20];

sat = satellite(sc,semiMajorAxis,eccentricity,inclination,
rightAscensionOfAscendingNode,argumentOfPeriapsis, trueAnomaly)

sat =
1x2 Satellite array with properties:

Name

ID
ConicalSensors
Gimbals
Transmitters
Receivers
Accesses
GroundTrack
Orbit
OrbitPropagator
MarkerColor
MarkerSize
ShowLabel
LabelFontColor
LabelFontSize

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,LeadTime=3600)

ans=1x2 object
1x2 GroundTrack array with properties:

LeadTime
TrailTime
LineWidth
LeadLineColor
TraillLineColor
VisibilityMode

Play the scenario and set the animation speed of the simulation to 40.

play(sc,PlaybackSpeedMultiplier=40)

satelliteScenario

&~ Satellde Scenamd Viewer = o

Cographion, snd S U U Commonity

Jun T T 1208080 UTC _ Jun 3 10 168680 UTC o 5 08 00:00 68 UTC Jun ' HECH 0600 68 UTC
Ll |

Manual Simulation of Satellite Scenario

Create a satellite scenario object and set the AutoSimulate property to false to enable manual
simulation of the satellite scenario.

startTime = datetime(2022,1,12);

stopTime = startTime + days(0.5);

sampleTime = 60; % Seconds
sc = satelliteScenario('AutoSimulate', false);

Add a GPS satellite constellation to the scenario.

sat = satellite(sc, "gpsAlmanac.txt");

Simulate the scenario using the advance function.

while advance(sc)
end

Obtain the satellite position histories.
p = states(sat);
AutoSimulate is false, so restart the scenario before adding a ground station.

restart(sc);

3-99

3 Objects

3-100

Add a ground station to the scenario.

gs = groundStation(sc);

Add access analysis between each satellite and ground station.

ac = access(sat,gs);

Simulate the scenario and determine the access intervals.

while advance(sc)

end

intvlsl = accessIntervals(ac)

intvls1=35x8 table

Source Target IntervalNumber StartTime EndTime
"PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05::
"PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:
"PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21::
"PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:
"PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00::
"PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:
"PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:
"PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:
"PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03::
"PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03::
"PRN:9" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:
"PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:
"PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:!
"PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04::
"PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:

13" "Ground station 32" 1 12-Jan-2020 00:03:56 12-Jan-2020 02:!

“PRN:

Visualize the simulation results.

v = satelliteScenarioViewer(sc, 'ShowDetails', false);

play(sc);

satelliteScenario

& Satellne Scenarmd Viewer - o

Siouroe: i, Maxow, Larfhete Ceographes, snd T GE Uses Commanity
320 B0 UTC dan 1."':‘|'.|:'|?|FMM uTe dan 13 M0 B4 00 08 UTC
' |

Verify that the access intervals are the same when you set the AutoSimulate property to true.

sc.AutoSimulate = true;
intvls2 = accessIntervals(ac)

intvls2=35x8 table

Source Target IntervalNumber StartTime EndTime
"PRN:1" "Ground station 32" 1 11-Jan-2020 23:20:25 12-Jan-2020 05:
"PRN:2" "Ground station 32" 1 12-Jan-2020 04:03:16 12-Jan-2020 07:
"PRN:3" "Ground station 32" 1 11-Jan-2020 19:50:06 11-Jan-2020 21:.
"PRN:3" "Ground station 32" 2 12-Jan-2020 01:52:43 12-Jan-2020 06:
"PRN:4" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00::
"PRN:4" "Ground station 32" 2 12-Jan-2020 04:54:02 12-Jan-2020 07:
"PRN:5" "Ground station 32" 1 12-Jan-2020 05:52:03 12-Jan-2020 07:
"PRN:6" "Ground station 32" 1 12-Jan-2020 02:43:29 12-Jan-2020 07:
"PRN:7" "Ground station 32" 1 11-Jan-2020 21:09:52 12-Jan-2020 03:
"PRN:8" "Ground station 32" 1 11-Jan-2020 20:33:36 12-Jan-2020 03:
"PRN:O" "Ground station 32" 1 11-Jan-2020 19:50:06 12-Jan-2020 00:
"PRN:9" "Ground station 32" 2 12-Jan-2020 05:08:32 12-Jan-2020 07:
"PRN:10" "Ground station 32" 1 12-Jan-2020 00:32:56 12-Jan-2020 01:!
"PRN:11" "Ground station 32" 1 11-Jan-2020 22:15:09 12-Jan-2020 04:.
"PRN:12" "Ground station 32" 1 12-Jan-2020 04:32:16 12-Jan-2020 07:

1 12-Jan-2020 00:03:56 12-Jan-2020 02:!

“PRN:13" “Ground station 32"

Visualize the scenario.

3-101

3 Objects

play(sc);

4+ Satellte Scenams Viewer - o

- '

S .
]
A0 LTS

Souroe: i, Maxsr, [arhwter Caograghics, snd S G U Communty .
¥ 2000 UTC J-|1J;‘ENMM“LITC Jan 13 200 04000 88 UTC
| |

Lo

Tips

* When saving the satellite scenario, either save the entire workspace containing the scenario
object or save the scenario object itself.

Version History
Introduced in R2021a

See Also

Objects
satellite | satelliteScenarioViewer

Functions
play | show | hide | advance | restart | access | groundStation

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

3-102

satelliteScenarioViewer

satelliteScenarioViewer

Create viewer for satellite scenario

Description

The satelliteScenarioViewer object represents a 3D visualization of the satelliteScenario
object. Use this object to focus the camera onto the satellite or the ground station by double-clicking
the satellite or ground station. Once focused, you can rotate the camera and it will orbit around the
selected satellite/ground station and not be allowed to pan out. To unfocus, you must double-click
elsewhere in the viewer or press the home button.

Creation

Syntax

satelliteScenarioViewer(scenario)

v = satelliteScenarioViewer(scenario)
satelliteScenarioViewer(scenario,Position = [1 1 500 5001])

Description

satelliteScenarioViewer(scenario) creates a 3-D or 2-D satellite scenario viewer for the
specified satellite scenario. Satellite Scenario Viewer is a 3-D map display and requires hardware
graphics support for WebGL™.

v = satelliteScenarioViewer(scenario) returns the handle to the satellite scenario viewer.

satelliteScenarioViewer(scenario,Position = [1 1 500 500]) sets the to the specified
value.

Properties

Name — Name of viewer window
'Satellite Scenario Viewer' (default) | string scalar | character vector

Name of the viewer window, specified as a comma-separated pair consisting of 'Name' and either a
string scalar or a character vector.

Data Types: char | string

Position — Viewer window position
center of the screen (default) | row vector of four elements

Size and location of the satellite scenario window in pixels, specified as a row vector of four elements.

The elements of the vector are [left bottom width height]. In the default case, width and
height are 800 and 600 pixels, respectively.

3-103

3 Objects

Basemap — Map on which scenario is visualized
'satellite' (default) | 'topographic' | 'streets' | 'streets-light' | 'streets-dark' |
'darkwater' | 'grayland’' | 'bluegreen' | 'colorterrain' | 'grayterrain' | 'landcover!

Map on which scenario is visualized, specified as a comma-separated pair consisting of 'Basemap'
and one of the values specified in this table:

R ‘streets’ o
n [
: %___ap < General-purpos
oL \map,that e GIE
. "MTccurate, le =
I “hertefroads a
Nl networks $
Oranjezicht W & i
"% 01Hosted by E
L B
.II\.% E
A & ! | 59
f “-'_—t = xF"rlrk
Earthstar Geogr E=ri South Africa, HERE Garfnin,
CNES/Airbus DS JNGA, USGS
4 'topo%ﬁaphxc'
., Cape
oy Ge ral purpos
lin i
Itab 28 tM OE%ePtf.m d
i opographic features

MG

Hosted by Esri.
e,

51.;&:.1:“1.-—4.
1".1|:k |
Esri South Africa, HERE Gar
1082{m /LISGS NGA Esri, HERE, Garmin, NGA,
e Lafldc]@ver' "streets-light’

Map designed to
provide geographic
context while
highlighting user data
on a light background.

Hosted by Esri.

Esri South Africa, HERE, Garinin,
MNGA, USGS

3-104

satelliteScenarioViewer

'bLPeg;een'
‘Two- land-ocea |
[TS e htgreen”. |
lland area: light
hu\"_ , _j‘ C ’_’,? EHH\’_ _nri
£ == e =t
i HCreated u I ' Lk

All basemaps except 'darkwater' require Internet access. The 'darkwater' basemap is included
with MATLAB and Satellite Communications Toolbox.

If you do not have consistent access to the Internet, you can download the basemaps created using
Natural Earth onto your local system by using the Add-On Explorer. The basemaps hosted by Esri are
not available for download.

3-105

3 Objects

Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by The MathWorks®.

Data Types: char | string

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of the animation for the input scenario used by the play function, specified as a comma-
separated pair consisting of 'PlaybackSpeedMultiplier' and a positive scalar.

CameraReferenceFrame — Reference frame of camera
"ECEF' (default) | 'Inertial’

Reference frame of the camera, specified as a comma-separated pair consisting of
'CameraReferenceFrame' and one of these values:

« 'ECEF' — Earth-Centered Earth-Fixed camera.
 ‘'Inertial' — Inertially fixed camera.

When you specify 'Inertial’', the globe rotates with respect to the camera. When you specify
"ECEF"', the camera rotates with the globe.

Dependencies
To enable this name-value argument, set to Dimensionto '3-D'.

CurrentTime — Current simulation time
StartTime of satelliteScenario (default) | datetime array

Current simulation time of the viewer, specified as a datetime array. This value changes over time
when the animation is playing.

Dependencies

To enable this name-value argument, set AutoSimulate to true.

Data Types: datetime

Dimension — Dimension of viewer
'3-D' (default) | '2-D'

Dimension of the viewer, specified as a comma-separated pair consisting of 'Dimension' and either
'3-D'or '2-D".

ShowDetails — Flag to show graphical details

true or 1 (default) | falseor©

Flag to show the graphical details for Satellite Scenario Viewer, specified as one of these numeric or
logical values.

* 1 (true) — Show all graphical details of satellites and ground stations except those explicitly
hidden.

* 0 (false) — Hide all graphical details of satellites and the ground stations, including orbits, fields
of view, labels, and the ground track. Even when ShowDetails is false, clicking or pausing on
satellites and ground stations reveals hidden graphical details or labels, respectively.

3-106

satelliteScenarioViewer

Data Types: logical

Note All properties can specified as name value arguments.

Object Functions

campos Set or get position of camera for Satellite Scenario Viewer
camheight Set or get height of camera for Satellite Scenario Viewer
camheading Set or get heading angle of camera for Satellite Scenario Viewer

camroll Set or get roll angle of camera for Satellite Scenario Viewer
campitch Set or get pitch angle of camera for Satellite Scenario Viewer
camtarget Set camera target for Satellite Scenario Viewer

play Play satellite scenario simulation results on viewer

showAll Show all graphics in viewer

hideAll Hide all graphics in satellite scenario viewer

Examples

Create and Visualize Satellite Scenario

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite and ground station to the scenario. Additionally, add an access between the satellite

and the ground station.

sat = satellite(sc,"eccentricOrbitSatellite.tle");
gs = groundStation(sc);
access(sat,gs);

Visualize the scenario at the start time defined in the TLE file by using the Satellite Scenario Viewer.

satelliteScenarioViewer(sc);

3-107

3 Objects

& Satellde Scenamnd Viewer = o

Samlits 41

Gmound station 2
- 1

-
Sl
L]

T2 56 LTE

\ Al

Souoe: [, Maxow, Darfhets Ceographes, snd T GE Uses Commanity
oy 5 2EchE 16004 88 UTC Moy 5 2008 5 08B0 UTC iy & EChE 5600 8 LITC
| |

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario

Functions
show | hide | access | groundStation | satellite

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Comparison of Orbit Propagators”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

3-108

Satellite

Satellite

Satellite in satellite scenario

Description

Satellite defines a satellite in satellite scenario object.

Creation

You can create Satellite objects using the satellite function of satelliteScenario object.

Properties

Name — Satellite name
string scalar | string vector | character vector | cell array of character vectors

You can set this property only when calling the satellite function. After you call satellite
function, this property is read-only.

Satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.
* If only one satellite is added, specify Name as a string scalar or a character vector.

» If multiple satellites are added, specify Name as a string scalar, character vector, string vector or a
cell array of character vectors. All satellites added as a string scalar or a character vector are
assigned the same specified name. The number of elements in the string vector or cell array of
character vector must equal the number of satellites being added. Each satellite is assigned the
corresponding name from the vector or cell array.

The default value when satellite is added to the satellite scenario using

* Keplerian orbital elements, TLE file, timeseries, or timetable — "Satellite ID", where ID is
assigned by the satellite scenario.

* SEM almanac file or RINEX GPS navigation data — "PRN:prnValue", where prnValue is an integer
denoting the pseudorandom noise code of the satellite as specified in the SEM almanac file.

* RINEX Galileo navigation data — "GAL Sat IF: id", where "id" is the satellite ID of the Galileo
satellite defined in the RINEX navigation data.

Data Types: string

ID — Satellite ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Satellite ID assigned by the simulator, specified as a positive scalar.

3-109

3 Objects

3-110

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling the conicalSensor. After you call the conicalSensor
function, this property is read-only.

Conical sensors attached to the Satellite, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the Satellite, specified as the comma-separated pair consisting of 'Gimbals'
and a row vector of Gimbal objects.

Transmitters — Transmitters attached to Satellite
row vector of Transmitter objects

You can set this property only when calling transmitter function. After you call the transmitter
function, this property is read-only.

Transmitters attached to the Satellite, specified as a row vector of Transmitter objects.

Receivers — Receivers attached to the satellite
row vector of Receiver objects

You can set this property only when calling the receiver. After you call the receiver function, this
property is read-only.

Receivers attached to the satellite, specified as a row vector of Receiver objects.

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling Satellite. After you call Satellite, this property is
read-only.

Access analysis objects, specified as a row vector of Access objects.

GroundTrack — Ground track of the Satellite
row vector of GroundTrack objects

You can set this property only when calling groundTrack. After you call groundTrack, this property
is read-only.

Ground track of the Satellite, specified as a row vector of GroundTrack objects.

Orbit — Orbit graphic
Orbit object

Orbit object parameters for a satellite, specified as an orbit object. Only these object properties are
relevant for this function.

LineColor — Color of orbit
[1,0,0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b’

Satellite

Color of the orbit, specified as an RGB triplet, hexadecimal color code, a color name, or a short name.
For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FFO000" I

"green” "g" [0 1 0] "#OOFF00"

"blue" b [0 0 1] "#O0OOOFF" I

"cyan" "c" [0 1 1] "#OOFFFF"

"magenta" "m" [1 0 1] "#FFOOFF" I

"yellow" "y [11 0] "#FFFFOO"

"black" k" [0 0 O] "#000000" I

"white" w" [11 1] "#FFFFFF" —

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

Example: 'blue’
Example: [0 0 1]
Example: '#0000FF'

LineWidth — Visual width of orbit
1 (default) | scalar in the range (0, 10)

3-111

3 Objects

Visual width of orbit in pixels, specified as a scalar in the range (0, 10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

VisibilityMode — Visibility mode of orbit graphic
"inherit' (default) | "'manual’

Visibility mode of orbit graphic, specified as one of these values:

* ‘'inherit' — Visibility of the graphic matches that of the parent
* 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Data Types: char | string

OrbitPropagator — Name of orbit propagator
"sgp4" | "sdp4" | "two-body-keplerian" | "ephemeris" | "gps" | "galileo"

You can set this property on satellite object creation and then this property becomes read-only.

Name of the orbit propagator used for propagating the satellite position and velocity, specified as
"sgp4", "sdp4", "two-body-keplerian", "ephemeris","gps", or "galileo". The value
depends on how you specify the satellite.

+ Timetable, table, timeseries, or tscollection — OrbitPropagatoris "ephemeris".

* SEM almanac file or RINEX data containing GPS navigation message — OrbitPropagator can
be any value except "ephemeris" and "galileo". The initialization is performed using the
"gps" orbit propagator.

+ RINEX data containing Galileo navigation message — OrbitPropagatoris "galileo" and can
be any value except "ephemeris" and "gps" The initialization is performed using the
"galileo" orbit propagator..

» TLE file — OrbitPropagator can be "two-body-keplerian", "sgp4", or "sdp4". If the
orbital period is less than 225 minutes, the initialization is performed using "sgp4". Otherwise,
the initialization is performed using "sdp4".

* Keplerian elements — OrbitPropagator can be "two-body-keplerian", "sgp4", or
"sdp4".

If the satellite is initialized using a timetable, table, timeseries object, or tscollection object,
the default propagator is "ephemeris". If the initialization is performed using a SEM almanac file,
the default propagator is "gps". If the initialization is performed using RINEX data, the default
propagator is "gps" for GPS satellites and "galileo" for Galileo satellites. Otherwise, if the orbital
period is less than 225 minutes, the default propagator is "sgp4", else "sdp4".

If RINEX data defines both valid GPS and Galileo navigation messages, OrbitPropagator cannot be
specified as "gps" or "galileo" name value argument. However, it can still be specified as "two-
body-keplerian", "sgp4", or "sdp4". The default propagator is "gps" for GPS satellites and
"galileo" for Galileo satellites.

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite automatically selects "ephemeris" orbit propagator.

3-112

Satellite

MarkerColor — Color of marker
[1 0 0] (default) | RGB triplet|string scalar of color name | character vector of
color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FF0000" —

"green" "g" [0 1 0] "#OOFF0O"

"blue" "b" [0 0 1] "#OOOOFF" —

"cyan" "c" [0 1 1] "#OOFFFF"

"magenta" "m" [1 0 1] "#FFOOFF" []

"yellow" ty" [110] "#FFFFOO"

"black" K" [0 0 0] "#000000" ——

"white" "w' [111] "#FFFFFF" I—

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" I
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E" I
[0.4660 0.6740 0.1880] "#7TAC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

3-113

3 Objects

3-114

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of Satellite label visibility
true or 1 (default) | falseor 0

State of Satellite label visibility, specified as a comma-separated pair consisting of 'ShowLabel' and
numerical or logical value of 1 (true) or 0 (false).

Data Types: logical

LabelFontColor — Font color of Satellite label
[1,0,0] (default) | RGB triplet |string scalar of color name | character vector of
color name

Font color of the Satellitelabel, specified as a comma-separated pair consisting of
"LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1], for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

"red" "t [1 0 0] "#FFOOOO" —

"green" "g" [0 1 0] "#0OFF0O"

"blue" "b" [0 0 1] "#0OOOFF" ——

“cyan" “c" [0 11] "#OOFFFF"

“magenta" |"m" [1 0 1] "#FFOOFF" I

"yellow" ty" [110] "#FFFFOO"

"black" "k [0 0 0] "#000000" E—

"white" w" [11 1] "#FFFFFF"]

"none" Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance

[0 0.4470 0.7410] "#0072BD"

Satellite

RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] "#D95319" I
[0.9290 0.6940 0.1250] "#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E" I
[0.4660 0.6740 0.1880] "#77AC30" I
[0.3010 0.7450 0.9330] "#4DBEEE"

[0.6350 0.0780 0.1840] "#A2142F" I

LabelFontSize — Font size of Satellite label
15 (default) | positive scalar in the range [6 30]

Font size of the Satellite label, specified as a comma-separated pair consisting of 'LabelFontSize'
and a positive scalar in the range [6 30].

Object Functions

access Add access analysis objects to satellite scenario

aer Calculate azimuth angle, elevation angle, and range of another satellite or ground
station in NED frame

conicalSensor Add conical sensor to satellite scenario

gimbal Add gimbal to satellite or ground station
groundTrack Add ground track object to satellite in scenario
orbitalElements Orbital elements of satellites in scenario
pointAt Point satellite at target

receiver Add receiver to satellite scenario

transmitter Add transmitter to satellite scenario

states Obtain position and velocity of satellite

show Show object in satellite scenario viewer

hide Hide satellite scenario entity from viewer
Examples

Visualize Line of Sight Between Two Satellites

Create a satellite scenario object.

startTime = datetime(2020,5,5,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; %sseconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite from a TLE file to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
satl = satellite(sc,tleFile, "Name", "Satl")

satl =
Satellite with properties:

Name: Satl
ID: 1

3-115

3 Objects

3-116

ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sdp4
MarkerColor: [0.059 1 1]
MarkerSize: 6
ShowLabel: true
LabelFontColor: [1 1 1]
LabelFontSize: 15

Add a satellite from Keplerian elements to the scenario and specify its orbit propagator to be "two-
body-keplerian".

semiMajorAxis = 6878137;
eccentricity = 0;

inclination = 20;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;

o°
3

%deg!
%deg!
%deg!
%deg!

sat2 = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...

argumentOfPeriapsis, trueAnomaly, "OrbitPropagator", "two-body-keplerian", "Name", "Sat2")

sat2 =
Satellite with properties:

GroundTrack: 1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: 1x1 matlabshared.satellitescenario.Orbit]

OrbitPropagator: two-body-keplerian

MarkerColor: [0.059 1 1]

MarkerSize: 6

ShowLabel: true
LabelFontColor: [1 1 1]
LabelFontSize: 15

Name: Sat2
ID: 2
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Accesses: [1x0 matlabshared.satellitescenario.Access]

[

[

Add access analysis between the two satellites.

ac = access(satl,sat2);

Determine the times when there is line of sight between the two satellites.
accessIntervals(ac)

ans=15x8 table
Source Target IntervalNumber StartTime EndTime

Durati

Satellite

“Satl" “Sat2" 1 05-May-2020 00:09:00 05-May-2020 01:08:00 3540
“Satl" “Sat2" 2 05-May-2020 01:50:00 05-May-2020 02:47:00 3420
"“Satl" “Sat2" 3 05-May-2020 03:45:00 05-May-2020 04:05:00 1200
"“Satl" “Sat2" 4 05-May-2020 04:32:00 05-May-2020 05:26:00 3240
"“Satl" “Sat2" 5 05-May-2020 06:13:00 05-May-2020 07:10:00 3420
“Satl" “Sat2" 6 05-May-2020 07:52:00 05-May-2020 08:50:00 3480
“Satl" “Sat2" 7 05-May-2020 09:30:00 05-May-2020 10:29:00 3540
"“Satl" “Sat2" 8 05-May-2020 11:09:00 05-May-2020 12:07:00 3480
"“Satl" “Sat2" 9 05-May-2020 12:48:00 05-May-2020 13:46:00 3480
"“Satl" “Sat2" 10 05-May-2020 14:31:00 05-May-2020 15:27:00 3360
“Satl" “Sat2" 11 05-May-2020 17:12:00 05-May-2020 18:08:00 3360
“Satl" “Sat2" 12 05-May-2020 18:52:00 05-May-2020 19:49:00 3420
"“Satl" “Sat2" 13 05-May-2020 20:30:00 05-May-2020 21:29:00 3540
"“Satl" “Sat2" 14 05-May-2020 22:08:00 05-May-2020 23:07:00 3540
"“Satl" “Sat2" 15 05-May-2020 23:47:00 06-May-2020 00:00:00 780
Visualize the line of sight between the satellites.
play(sc);
4 Satelle Scenana Viewer - o =
2]

-

S0
My % RN
A LT
4 11 »

Souroe: L, Maxcw, Larfhete Ceographes, and iy
3050 0 UTC il.rrr"', S 06 D6 ed] 5 SO0 12008 L] My 5 2000 18 86.00 UTC Mlary & 308 |
Al | |

Visualize GPS Constellation

Set up the satellite scenario.

startTime = datetime(2021,8,5);
stopTime = startTime + days(1l);

3-117

3 Objects

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add satellites to the scenario from a SEM almanac file.
sat = satellite(sc, "gpsAlmanac.txt","OrbitPropagator","gps");

Visualize the GPS constellation.

v = satelliteScenarioViewer(sc);

4 Satellae Scenans Viewer - o

Sousroe: i, Maxer, [arfwter Caogragphics, snd S G U Communty
PMMI:_IT'I: Aug 5 3027 06 8300 UTC Amg 5 M2 1200000 UTC Aug 5 2T 18000 08 UTC g & M {
I | | |

Version History
Introduced in R2021a

References

[1] Hoots, Felix R., and Ronald L. Roehrich. Models for propagation of NORAD element sets.
Aerospace Defense Command Peterson AFB CO Office of Astrodynamics, 1980.

See Also

Objects
satelliteScenario | groundStation | access | satelliteScenarioViewer

3-118

Satellite

Functions
show | play | hide

Topics

“Comparison of Orbit Propagators”

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

3-119

3 Objects

Transmitter

Transmitter object belonging to satellite scenario

Description

Transmitter defines a transmitter object belonging to a satellite scenario.

Creation

You can create Transmitter objects using the transmitter function of satellite,
groundStation, or gimbal.

Properties

Name — Transmitter name
"Transmitter idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling the transmitter function. After you call the
transmitter function, this property is read-only.

Transmitter name, specified as a name-value argument consisting of 'Name' and a string scalar,
string vector, character vector, or a cell array of character vectors.

* Ifyou are adding only one transmitter, specify Name as a string scalar or a character vector.

» Ifyou are adding multiple transmitters, specify Name as a string scalar, character vector, string
vector, or a cell array of character vectors. All transmitters that you add as a string scalar or a
character vector are assigned the same specified name. The number of elements in the string
vector or cell array of character vectors must equal the number of transmitters that you are
adding. Each transmitter is assigned the corresponding name from the vector or cell array.

In the default value, idx is the ID assigned by the satellite scenario.

Data Types: char | string

ID — Transmitter ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
Transmitter ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; O; O] (default) | three-element vector | matrix

Mounting location with respect to the parent object in meters, specified as a three-element vector or
a matrix. The position vector is specified in the body frame of the input parent.

3-120

Transmitter

» Ifyou are adding one transmitter, MountingLocation is a three-element vector. The elements
specify the x, y, and z components of the Cartesian coordinates in the body frame of transmitter.

» Ifyou are adding multiple transmitters, MountingLocation can be a three-element vector or a
matrix. When specified as a vector, the same set of mounting locations are assigned to all specified
transmitters. When specified as a matrix, MountingLocation must contain three rows and the
same number of columns as the transmitters. The columns correspond to the mounting location of
each specified transmitter and the rows correspond to the mounting location coordinates in the
parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountinglLocation property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Data Types: double

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers | matrix

Mounting orientation with respect to parent object in degrees, specified as a three-element row
vector of positive numbers. The elements of the vector correspond to yaw, pitch, and roll, in that
order. Yaw, pitch, and roll are positive rotations about the z-axis, intermediate y-axis, and
intermediate x-axis of the parent.

* Ifyou are adding one transmitter, the MountingAngles property is a three-element vector.

* Ifyou are adding multiple transmitters the MountingAngles property can be a three-element
vector or a matrix. When specified as a vector, the same set of mounting angles are assigned to all
specified transmitters. When specified as a matrix, MountingAngles must contain three rows
and the same number of columns as the transmitters. The columns correspond to the mounting
angles of each specified transmitter and the rows correspond to the yaw, pitch, and roll angles in
the parent body frame.

When the AutoSimulate property of the satellite scenario is false, you can modify the
MountingAngles property only when SimulationStatus is NotStarted. You can use the
restart function to reset SimulationStatus to NotStarted, but doing so erases the simulation
data.

Example: [0; 30; 60]
Data Types: double

Antenna — Antenna object associated with transmitter
scalar | vector

Antenna object associated with the transmitter, specified as either a scalar or a vector. This object
can be the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array
System Toolbox. The default Gaussian antenna has a dish diameter of 1 meter and an aperture
efficiency of 0.65.

Antenna can be specified in transmitter as a name-value argument consisting of 'Antenna’' and a
scalar, antenna or phased array objects.

» Ifyou are adding only one transmitter, Antenna must be a scalar.

» Ifyou are adding multiple transmitters, Antenna is a vector. The same antenna is assigned to all
transmitters.

3-121

3 Objects

3-122

SystemLoss — Total system loss in the transmitter
5 (default) | scalar | vector

Total system loss in the transmitter in dB, specified as a scalar or a vector.

System loss can be specified in transmitter as a name-value argument consisting of 'SystemLoss'
and a scalar, or vector.

» If you are adding only one transmitter, specify SystemLoss as a scalar.

* Ifyou are adding multiple transmitters are added, specify SystemLoss as a scalar or a vector.
When SystemLoss is a scalar, the same SystemLoss is assigned to all transmitters. When
SystemlLoss is a vector, its length must equal the number of transmitter and each element of
SystemLoss is assigned to the corresponding transmitter in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the
SystemLoss value while SimulationStatus is NotStarted or InProgress.

Frequency — Transmitter frequency
14e9 (default) | scalar | vector

Transmitter frequency in Hz, specified as a name-value argument consisting of 'Frequency' and a
scalar or a vector.

* Ifyou are adding only one transmitter, the Frequency must be a scalar.

* Ifyou are adding multiple transmitters are added, the frequency value can be a scalar or a vector.
All transmitters added as a scalar are assigned the same specified Frequency. The length of the
vector must equal the number of transmitters added and each element of Frequency is assigned
to the corresponding transmitter in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the Frequency
value while SimulationStatus is NotStarted or InProgress.

BitRate — Bit rate of transmitter
10 (default) | scalar | vector

Bit rate of the transmitter in Mbps, specified as a name-value pair consisting of 'BitRate' and a scalar
or a vector.

* Ifyou are adding only one transmitter, the bit rate value must be a scalar.

» Ifyou are adding multiple transmitters, the bit rate value can be a scalar or a vector. All
transmitters added as a scalar are assigned the same specified BitRate. The length of the vector
must equal the number of transmitters added and each element of BitRate is assigned to the
corresponding transmitter in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the BitRate
value while SimulationStatus is NotStarted or InProgress.

Power — Power of high power amplifier
12 (default) | scalar | vector

Power of the high power amplifier in dbW, specified as a name-value pair consisting of 'Power' and a
scalar or a vector.

» Ifyou are adding only one transmitter, the power value must be a scalar.

Transmitter

» Ifyou are adding multiple transmitters, the power value can be a scalar or a vector. All
transmitters added as a scalar are assigned the same specified Power. The length of the vector
must equal the number of transmitters added and each element of Power is assigned to the
corresponding transmitter in the parent.

When the AutoSimulate property of the satellite scenario is false, you can modify the Power value
while SimulationStatus is NotStarted or InProgress.

Links — Link analysis objects
row vector of Link objects

This property is read-only.
Link analysis objects, specified as a row vector Link objects.

Object Functions

aer Calculate azimuth angle, elevation angle, and range of another satellite or ground
station in NED frame
gaussianAntenna Add Gaussian antennas

link Add link analysis objects to transmitter
pattern Plot 3-D radiation pattern of antenna
pointAt Point satellite at target

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020

SampleTime: 60

AutoSimulate: 1
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]

Viewers: [0x0 matlabshared.satellitescenario.Viewer]
AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000;
eccentricity = 0;

inclination = 60;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;

3-123

o°

mete

deg
deg
deg

o® o o°

3 Objects

trueAnomaly = 0; % deg
sat = satellite(sc,semiMajorAxis,eccentricity,inclination,rightAscensionOfAscendingNode, .
argumentOfPeriapsis, trueAnomaly,Name="Satellite");

Add gimbals to the satellite. These gimbals enable the satellite receiver antenna to steer to the first
ground station, and its transmitter antenna to steer to the second ground station.

gimbalrxSat
gimbaltxSat

gimbal(sat);
gimbal(sat);

Add a receiver to the first gimbal of the satellite.

gainToNoiseTemperatureRatio = 5;

systemLoss = 3;

rxSat = receiver(gimbalrxSat,Name="Satellite Receiver",GainToNoiseTemperatureRatio= ...
gainToNoiseTemperatureRatio,SystemLoss=systemLoss)

o® o°
o O

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; O; O] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
PreReceiverLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Add a transmitter to the second gimbal of the satellite.

frequency = 27e9;

power = 20;

bitRate = 20;

systemLoss = 3;

txSat = transmitter(gimbaltxSat,Name="Satellite Transmitter",Frequency=frequency,
power=power,BitRate=bitRate,SystemLoss=systemLoss)

Hz
dBW
Mbps
dB

o® o° of o°

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 5
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % meters
apertureEfficiency = 0.5;

Transmitter

gaussianAntenna(txSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);
gaussianAntenna(rxSat,DishDiameter=dishDiameter,ApertureEfficiency=apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,Name="Ground Station 1");

latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude, longitude,Name="Ground Station 2");

Point gimbals of the satellite towards the two ground stations for the simulation duration.

pointAt(gimbaltxSat,gs2);
pointAt(gimbalrxSat,gsl);

Add gimbals to the ground stations. These gimbals enable the ground station antennas to steer
towards the satellite.

gimbalgsl
gimbalgs2

gimbal(gsl);
gimbal(gs2);

Add a transmitter to ground station gs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalgsl,Name="Ground Station 1 Transmitter",Frequency=frequency,
Power=power,BitRate=bitRate);

Add a receiver to ground station gs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalgs2,Name="Ground Station 2 Receiver",RequiredEbNo=requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,DishDiameter=dishDiameter);
gaussianAntenna(rxGs2,DishDiameter=dishDiameter);

Point gimbals of the ground stations towards the satellite for the simulation duration.

pointAt(gimbalgsl,sat);
pointAt(gimbalgs2,sat);

Add link analysis to transmitter txGs1.

lnk = link(txGs1l, rxSat,txSat, rxGs2)

lnk =
Link with properties:

Sequence: [10 4 5 11]

LineWidth: 2
LineColor: [0.3922 0.8314 0.0745]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(1lnk)

3-125

o® o o°

=Q T

=

o

3 Objects

ans=4x8 table

Source Target IntervalNumber Star
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov-20:
"Ground Station 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov-20:

Visualize the link by using the Satellite Scenario Viewer.

play(sc);

Somare Ean, Mass Eartfeter opograpturs, sl Pa L5 L Comemssty

000008 UTC ﬂpuv}i;"ﬂ]‘ﬂ 0 S 00 LITC Now 35 2020 17 0000 UTC Mo 25 7000 1800 03 UTC Mo 26 000
Al | | |

Version History
Introduced in R2021a

See Also

Objects
satelliteScenario | satelliteScenarioViewer | Receiver

Functions
play | show | hide | groundStation | access | receiver | transmitter | pointAt

3-126

Transmitter

Topics

“Model, Visualize, and Analyze Satellite Scenario”

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

3-127

3 Objects

3-128

skyplot

Plot satellite azimuth and elevation data

Syntax

azdata,eldata)
azdata,eldata, labeldata)
status)

____,Name, Value)

skyplot
skyplot
skyplot
skyplot

—~ e~~~

skyplot(parent,)
h = skyplot(_)

Description

skyplot(azdata,eldata) creates a sky plot using the azimuth and elevation data specified as
matrices in degrees. Azimuth angles are measured in degrees, clockwise-positive from the North
direction. Elevation angles are measured from the horizon line with 90 degrees being directly up. For
details about the sky plot figure elements, see “Main Sky Plot Elements” on page 3-135.

skyplot(azdata,eldata, labeldata) specifies data labels as a string array with elements
corresponding to each data point in the azdata and eldata inputs.

skyplot(status) specifies the azimuth and elevation data in a structure with fields
SatelliteAzimuth and SatelliteElevation.

skyplot(,Name, Value) specifies options using one or more name-value arguments in addition
to the input arguments in previous syntaxes. The name-value arguments are properties of the
SkyPlotChart object. For a list of properties, see SkyPlotChart Properties.

skyplot(parent,) creates the sky plot in the figure, panel, or tab specified by parent.
h = skyplot() returns the sky plot as a SkyPlotChart object, h. Use h to modify the

properties of the chart after creating it. For a list of properties, see SkyPlotChart Properties.

Examples

View Satellite Positions from GNSS Sensor

Create a GNSS sensor model as a gnssSensor (Navigation Toolbox) System object™.

gnss = gnssSensor;

Specify the position and velocity of the sensor. Simulate the sensor readings and get status from
visible satellites. Store the azimuth and elevation angles as vectors.

[0 0 0];
[0 0 0];
, status] = gnss(pos, vel);

pos
vel
[~,

tonon

skyplot

status.SatelliteAzimuth;
status.SatelliteElevation;

satAz
satEl

Create random local elevation masks, with a maximum elevation of 30 degrees, to act as the local
environment.

rng(8)

terrainMaskElevations = 30*rand(1,12); % elevations (degrees)
terrainMaskEdges = [0 24 48 100 132 180 204 240 276 288 300 312 360]; % azimuth edges (degrees)

Plot the satellite positions with the elevation masks.

skyplot(satAz,satEl,MaskElevation=terrainMaskElevations,MaskAzimuthEdges=terrainMaskEdges);

N
330° 30°
@
300° ® 60°
@
W] @ E
0° 20° 40° 60° 80°
@
@
@
240° 120°
210° 150°
S

Plot Series of Satellite Positions Over Time
Animate the trajectory of satellite positions over time from a GNSS sensor.

Initialize the sky plot figure. Specify the relevant time-stepping information.

skyplotHandle = skyplot(0,0);

3-129

3 Objects

&
330° 30°
300° 60"
W E
o* 20" 40 &0° 80°
240° 120°
210° 150°
S

numHours = 12;

dt = 100;

numSeconds = numHours * 60 * 60;
numSimSteps = numSeconds/dt;

Create a GNSS sensor model as a gnssSensor (Navigation Toolbox) System Object™.
gnss = gnssSensor('SampleRate', 1/dt);
Iterate through the time steps and do the following:

+ Simulate the sensor readings. Specify the zero postion and velocity for the stationary sensor.
* Store the azimuth and elevation angles as vectors.
* Set the AzimuthData and ElevationData properties of the SkyPlotChart handle directly.

for i = l:numSimSteps
[~, ~, status] = gnss([0 0 0],[0 0 0]);

satAz
satEl

status.SatelliteAzimuth;
status.SatelliteElevation;

set(skyplotHandle, 'AzimuthData',satAz, 'ElevationData’',satEl);

drawnow
end

3-130

skyplot

N
330° 30°
@
@
300° 60°
@
@
W E
0° 20° 40° 60° 80°
®
@
240° 120°
@
@
210° 150°
s

View Satellite Positions For Different Groups

Load the azimuth and elevation data from a logfile generated by an Adafruit® GPS satellite sensor.
The data provided in this example contains the azimuth and elevation of each satellite and the
pseudorandom noise (PRN) codes. Store these values as vectors.

load('gpsHWInfo', "hwInfo')

satAz = hwInfo.SatelliteAzimuths;
satEl = hwInfo.SatelliteElevations;
prn = hwInfo.SatellitePRNs;

Separate the satellites based on the PRN codes. To correlate each position with a group, create a
categorical array. For this set of satellites, only the ones with PRNs less than 32 are used in the
positioning solution.

isUnused = (prn > 32);
group = categorical(isUnused,[false true],["Used in Positioning Solution" "Unused"]);

Visualize the satellites and specify the categorical groups in the GroupData name-value argument.
Specify the PRN as the label for each point. Show the legend.

skyplot(satAz,satEl,prn,GroupData=group)
legend('Used', 'Unused')

3-131

3 Objects

3-132

M
330° 30
O
300° @ 80"
FS o
a1 4
w @ o ©]] © Used
e 0° 40" 60" a0° ij} o Unused
I'::::I R
240°) 120°
@
210° 160°
3

Visualize Satellite Trajectories in Skyplot

Specify the receiver position, RINEX navigation file, mask angle, time step size, and number of hours
of data to sample from the RINEX file.

recPos = [42 -71 50];

navfile = "GODSOOUSA R 20211750000 01D GN.rnx";
maskAngle = 25;

dt = 60; % seconds
numHours = 4;

Read the navigation file, and get the GPS data of all satellites captured in the file.

data = rinexread(navfile);
[~,satIdx] = unique(data.GPS.SatellitelID);
navmsg = data.GPS(satIdx,:);

Set the starting time to the initial time of the navigation message. Then, create the time vector t.

startTime = navmsg.Time(1);

secondsPerHour = 3600;

timeElapsed = 0:dt: (secondsPerHour*numHours);
t = startTime + seconds(timeElapsed);

skyplot

Initialize vectors for azimuth and elevation. Then, collect azimuth and elevation data at times t for all
satellites.

numSats = numel(navmsg.SatellitelD);

allAz = NaN(numel(t),numSats);

allEl = allAz;

for idx = 1l:numel(t)
[satPos,~,satID] = gnssconstellation(t(idx),RINEXData=navmsg);
[az,el,vis] = lookangles(recPos,satPos,maskAngle);
allAz(idx,:) az;
allEl(idx,:) el;

end

Mark all satellites below the horizon with an elevation less than 0 as missing.

allEl(allEl < 0) = missing;

Display the satellite trajectories as an animation by creating a skyplot and updating the
AzimuthData and ElevationData properties.

figure
sp = skyplot(allAz(1,:),allEl(1,:),satID,MaskElevation=maskAngle);
for idx = l:size(allAz, 1)
set(sp,AzimuthData=allAz(1:idx, :),ElevationData=allEl(1l:idx,:));
drawnow limitrate
end

330° 30°

60"

120°

3-133

3 Objects

3-134

Input Arguments

azdata — Azimuth angles for visible satellite positions
n-element vector of angles | t-by-n matrix of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles or t-by-n
matrix of angles. n is the number of visible satellite positions in the plot, and t is the number of time
steps of the satellites. Azimuth angles are measured in degrees, clockwise-positive from the north
direction.

Example: [25 45 182 356] specifies the azimuth angles for four satellites at one time step.
Data Types: double

eldata — Elevation angles for visible satellite positions
n-element vector of angles | t-by-n matrix of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles or t-by-n
matrix of angles. n is the number of visible satellite positions in the plot, and t is the number of time
steps of the satellites. Elevation angles are measured from the horizon line with 90 degrees being
directly up.

Example: [45 90 27 74] specifies the elevation angles for four satellites at one time step.
Data Types: double

labeldata — Labels for visible satellite positions
n-element string array

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.

EXample: [IIGlII IIGllII IIG7II IIG3II]

Data Types: string

status — Satellite status
structure array

Satellite status, specified as a structure array with fields SatelliteAzimuth and
SatelliteElevation. Typically, this status structure comes from a gnssSensor object, which
simulates satellite positions and velocities.

Example: gnss = gnssSensor; [~,~,status] = gnss(position,velocity)

Data Types: struct

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Output Arguments

h — Sky plot chart
SkyPlotChart object

skyplot

Sky plot chart, returned as a SkyPlotChart object, which is a standalone visualization on page 3-
135. Use h to set properties on the sky plot chart. For more information, see SkyPlotChart Properties

(Navigation Toolbox).

More About

Main Sky Plot Elements

The main elements of the figure are:

Standalone Visualization

EED]
//’-’-'
//
Labels
@ |
E11
] ! =
[50]
G114 :
@
%)
\\
\“"'\-\.__
~

Azimuth angles

-C";EZ-.-""H,_\
O “\‘\\\
AN
G7 sy
@ \
II GPS
< e
() Galileo
EI7 I,'I
@ .
//
f’//
~'/

Groups

Azimuth axes — Specified by the azdata input argument, azimuth angle positions are measured
clockwise-positive from the North direction.

Elevation axes —Specified by the eldata input argument, elevation angle positions are measured
from the horizon line with 90 degrees being directly up.

Labels — Specified by the labeldata input argument as a string array with an element for each
point in the azdata and eldata vectors.

Groups — Specified by the GroupData property, a categorical array defines the group for each
satellite position.

A standalone visualization is a chart designed for a special purpose that works independently from

other charts. Unlike other charts such as plot and surf, a standalone visualization has a

3-135

3 Objects

3-136

preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:

* It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.
* The gca function can return the chart object as the current axes.

* You can pass the chart object to many MATLAB functions that accept an axes object as an input
argument. For example, you can pass the chart object to the title function.

Version History
Introduced in R2021a

skyplot supports azimuth and elevation trajectories and elevation masks

* The azdata and eldata arguments now accept matrices, enabling you to represent trajectories
by adding azimuth and elevation data for satellites at multiple time steps.

» Elevation angle masks are now supported using these new SkyPlotChart properties:

* MaskElevation

* MaskAlpha

* MaskColor

* MaskAzimuthEdges

* MaskAzimuthEdgesMode

See Also

Functions
polarscatter

Properties
SkyPlotChart Properties (Navigation Toolbox)

Objects
gnssSensor | nmeaParser

SkyPlotChart Properties

SkyPlotChart Properties

Sky plot chart appearance and behavior

Description

The SkyPlotChart properties control the appearance of a sky plot chart generated using the
skyplot function. To modify the chart appearance, use dot notation on the SkyPlotChart object:

h = skyplot;

h.AzimuthData = [45 120 295];
h.ElevationData = [10 45 60];
h.Labels = ["G1" "G4" "G11"];

Properties
Sky Plot Properties

AzimuthData — Azimuth angles for visible satellite positions
n-element vector of angles | t-by-n matrix of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles or t-by-n
matrix of angles. n is the number of visible satellite positions in the plot, and t is the number of time
steps of the satellites. Azimuth angles are measured in degrees, clockwise-positive from the north
direction.

If you specify AzimuthData as a matrix, the last row indicates the current azimuth angles of the
satellites.

Example: [25 45 182 356] specifies azimuth angles for four satellites at one time step

Data Types: double

ElevationData — Elevation angles for visible satellite positions
n-element vector of angles | t-by-n matrix of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles or t-by-n
matrix of angles. n is the number of visible satellite positions in the plot, and t is the number of time
steps of the satellites. Elevation angles are measured from the horizon line with 90 degrees being
directly up.

If you specify ElevationData as a matrix, the last row indicates the current elevation angles of the
satellites.
Example: [45 90 27 74] specifies elevation angles for four satellites at one time step

Data Types: double

LabelData — Labels for visible satellite positions
n-element string array

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.

3-137

3 Objects

EXample: [IIGlII IIGllII IIG7II IIG3II]
Data Types: string

GroupData — Group for each satellite position
categorical array

Group for each satellite position, specified as a categorical array. Each group has a different color
label defined by the ColorOrder property.

Example: [GPS GPS Galileo Galileo]
Data Types: double

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. This property defines the palette of
colors MATLAB uses to create plot objects such as Line, Scatter, and Bar objects. Each row of the
array is an RGB triplet. An RGB triplet is a three-element vector whose elements specify the
intensities of the red, green, and blue components of a color. The intensities must be in the range [0,
1]. This table lists the default colors.

Colors ColorOrder Matrix

[0 0.4470 0.7410
0.8500 0.3250 0.0980
0.9290 0.6940 0.1250
0.4940 0.1840 0.5560
0.4660 0.6740 0.1880
0.3010 0.7450 0.9330
0.6350 0.0780 0.1840]

MATLAB assigns colors to objects according to their order of creation. For example, when plotting
lines, the first line uses the first color, the second line uses the second color, and so on. If there are
more lines than colors, then the cycle repeats.

You can also set the color order using the colororder function.
Label Properties

LabelFontSize — Font size of labels
scalar numeric value

Font size of labels, specified as a scalar numeric value. The default font depends on the specific
operating system and locale.

Example: h = skyplot(,'LabelFontSize',12)
Example: h.LabelFontSize = 12

LabelFontSizeMode — Selection mode for font size of labels
'auto' (default) | 'manual’

Selection mode for the font size of labels, specified as one of these values:

3-138

SkyPlotChart Properties

* ‘'auto' — Font size specified by MATLAB. If you resize the axes to be smaller than the default
size, the font size can scale down to improve readability and layout.

* 'manual' — Font size specified manually. MATLAB does not scale the font size as the axes size
changes. To specify the font size, set the LabelFontSize property.

Mask Properties

MaskElevation — Mask elevation angle
0 (default) | nonnegative scalar | N-element vector

Elevation angle of mask, specified as a nonnegative scalar or N-element vector of nonnegative values,
in degrees. N is m + 1, where m is the number of elements in MaskAzimuthEdges..

Example: h = skyplot(,MaskElevation=25)

Data Types: double

MaskAlpha — Mask transparency
0.3 (default) | scalar in range [0, 1]

Mask transparency, specified as a scalar in the range [0, 1]. A transparency value of 1 is opaque, 0 is
completely transparent, and values between 0 and 1 are semitransparent.

Example: h = skyplot(,MaskAlpha=0.1)
Data Types: double

MaskColor — Mask color
[0.4902 0.4902 0.4902] (default) | RGB triplet | hexadecimal color code | color name | short
color name

Mask color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short color
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]. For example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800"', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and the hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFO000' —

‘green’ 'g! [0 1 0] '#00FF00'

"blue’ ‘b [0 0 1] '#0000FF' ——

‘cyan' ‘c' [0 11] '#O0OFFFF'

'magenta’ 'm' [1 0 1] '#FFOOFF' I

3-139

3 Objects

3-140

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code
'yellow' 'y! [11 0] '"#FFFFQO'
'black’ 'k [0 0 0] '#000000' E—
'white' 'w' [111] "#FFFFFF' —
‘none’ Not Not applicable Not applicable No color
applicable

This table shows the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in
many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' —
[0.8500 0.3250 0.0980] '#D95319' E—
[0.9290 0.6940 0.1250] '#EDB120"

[0.4940 0.1840 0.5560] '#7E2F8E' —
[0.4660 0.6740 0.1880] '#77AC30" E—
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' E—

Example: h = skyplot(__ ,MaskColor="r")
Data Types: double | string | char

MaskAzimuthEdges — Mask angle azimuth edges
[0 360] (default) | m-element row vector

Mask angle azimuth edges, specified as an m-element row vector, where m is the total number of
azimuth edges.

Example: h = skyplot(_ ,MaskAzimuthEdges=0:45:360)
Data Types: double

MaskAzimuthEdgesMode — Mask angle azimuth edges mode
"auto" (default) | "manual”

Mask angle azimuth edges mode, specified as "auto" or "manual"”.

* "auto" — Automatically divide mask angle azimuth edges evenly between 0 and 360 degrees.

* "manual" — Specify mask angle azimuth edges manually using the MaskAzimuthEdges
property.

Example: h = skyplot(,MaskAzimuthEdgesMode="manual")
Data Types: string | char

Chart Properties

HandleVisibility — Visibility of object handle
‘on' (default) | 'off' | 'callback"

SkyPlotChart Properties

Visibility of the SkyPlotChart object handle in the Children property of the parent, specified as
one of these values:

* 'on' — Object handle is always visible.

« 'off' — Object handle is invisible at all times. This option is useful for preventing unintended
changes to the UI by another function. To temporarily hide the handle during the execution of that
function, set the HandleVisibility to 'off"'.

* 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles, regardless of their HandleVisibility property setting.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. This
property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the Tile and TileSpan properties on
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

This code places the chart ¢ in the third tile of the grid..

c.Layout.Tile = 3;

3-141

3 Objects

3-142

To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as 'north', 'south’,
'east', or 'west'. For example, setting the value to 'east' places the chart in the tile to the right
of the grid.

c.Layout.Tile = 'east';

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object.
For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a
figure or panel) then this property is empty and has no effect.

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Marker Properties

MarkerEdgeAlpha — Marker edge transparency
1 (default) | scalar in range [0, 1] | ' flat'

Marker edge transparency, specified as a scalar in the range [0,1] or 'flat'. Avalue of 1 is
opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

To set the edge transparency to a different value for each point in the plot, set the AlphaData
property to a vector the same size as the XData property, and set the MarkerEdgeAlpha property to
"flat'.

MarkerEdgeColor — Marker outline color
"flat' (default) | 'auto' | RGB triplet | hexadecimal colorcode | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto’', an RGB triplet, a hexadecimal color code, a color name, or
a short name. The value of 'auto' uses the same color as the Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]. For example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and the hexadecimal color codes.

SkyPlotChart Properties

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

‘green' ‘g’ [0 1 0] '#OOFFOO'

'blue’ ‘b [0 0 1] '#0000FF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yvellow' 'y! [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000' E—

'white' 'w' [111] "#FFFFFF']

'none’ Not Not applicable Not applicable No color

applicable

This table shows the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in
many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] "#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

MarkerFaceAlpha — Marker face transparency
0.6 (default) | scalar in range [0,1] | ' flat'

Marker face transparency, specified as a scalar in the range [0,1] or ' flat'. A value of 1 is opaque
and 0 is completely transparent. Values between 0 and 1 are partially transparent.

To set the marker face transparency to a different value for each point, set the AlphaData property
to a vector the same size as the XData property, and set the MarkerFaceAlpha property to 'flat'.

MarkerFaceColor — Marker fill color
‘flat' (default) | 'auto' | 'none’ | RGB triplet | hexadecimal colorcode | 'r* | 'g' | 'b' | ...

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'flat' option uses the CData values. The 'auto' option uses the same
color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

3-143

3 Objects

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r! [1 0 0] '"#FFO000"' —

'green' ‘g’ [0 1 0] '#OOFFOO'

'blue’ ‘b [0 0 1] '#0000FF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ 'm' [1 0 1] '"#FFOOFF' I

'yvellow' 'y! [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000' E—

'white' 'w' [111] "#FFFFFF']

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' —
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] "#TE2F8E' —
[0.4660 0.6740 0.1880] "#77AC30"' —
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' —

Example: [0.3 0.2 0.1]
Example: 'green’
Example: '#D2F9A7'

MarkerSizeData — Marker size
100 (default) | positive scalar | vector of positive values

Marker size, specified as a positive scalar or vector of positive values in points, where one point =
1/72 of an inch. If specified as a vector, the vector must be of the same length as AzimuthData.

Position

PositionConstraint — Position to hold constant
'outerposition' | 'innerposition’

3-144

SkyPlotChart Properties

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

* ‘'outerposition' — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

* ‘'innerposition' — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and location
[0 0 1 1] (default) | four-element vector

Outer size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The outer position
includes the colorbar, title, and axis labels.

 The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

* The width and height elements are the skyplot dimensions, which include the skyplot cells, plus
a margin for the surrounding text and colorbar.

The default value of [0 © 1 1] covers the whole interior of the container. The units are normalized
relative to the size of the container. To change the units, set the Units property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

InnerPosition — Inner size and location
[0.1300 0.1100 0.7750 0.8114] (default) | four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The inner position
does not include the colorbar, title, or axis labels.

e The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

* The width and height elements are the skyplot dimensions, which include only the skyplot cells.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Position — Inner size and location
four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),

specified as a four-element vector of the form [left bottom width height]. This property is
equivalent to the InnerPosition property.

3-145

3 Objects

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Units — Position units
‘normalized’' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters’

Position units, specified as one of these values.

Units Description

‘normalized' (default) Normalized with respect to the container, which
is typically the figure or a panel. The lower left
corner of the container maps to (0,0), and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

e Character width = width of letter x.

* Character height = distance between the
baselines of two lines of text.

'points’ Typography points. One point equals 1/72 inch.

'pixels’ Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows® and Macintosh systems:

* On Windows systems, a pixel is 1/96th of an
inch.

* On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value argument during object creation, you must set the Units
property before specifying the properties that you want to use these units, such as OuterPosition.

Visible — State of visibility
‘on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off"', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0n0OffSwitchState.

* 'on' — Display the skyplot.

+ 'off' — Hide the skyplot without deleting it. You can still access the properties of an invisible
SkyPlotChart object.

3-146

SkyPlotChart Properties

Version History
Introduced in R2021a

SkyPlotChart supports azimuth and elevation trajectories and elevation masks

* The AzimuthData and ElevationData properties now accept matrices, enabling you to
represent trajectories by adding azimuth and elevation data for satellites at multiple time steps.

* Elevation angle masks are now supported using these new properties:

* MaskElevation

* MaskAlpha

* MaskColor

* MaskAzimuthEdges

* MaskAzimuthEdgesMode

See Also

Functions
skyplot | polarscatter

Objects
gnssSensor | nmeaParser

3-147

System Objects

4 System Objects

ccsdsTMWaveformGenerator

Generate CCSDS TM waveform

Description

The ccsdsTMWaveformGenerator System object generates a Consultative Committee for Space
Data Systems (CCSDS) Telemetry (TM) time-domain waveform. The object implements the waveform
generation aspects of CCSDS standard blue books:

¢ CCSDS 131.0-B-3 — TM synchronization and channel coding [1]

* CCSDS 401.0-B-30 — Radio frequency and modulation systems [2]

* (CCSDS 131.2-B-1 — Flexible advanced coding and modulation scheme for high rate TM
applications [3]

Note The object supports waveform generation specified by the CCSDS TM synchronization and
channel coding standard [1] and CCSDS flexible advanced coding and modulation scheme for high
rate TM standard [3]. To obtain the waveform for either of the desired standard, set the
WaveformSource property.

To generate a CCSDS TM waveform:

1 Create the ccsdsTMWaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

tmWaveGen = ccsdsTMWaveformGenerator

tmWaveGen = ccsdsTMWaveformGenerator(Name,Value)
Description

tmWaveGen = ccsdsTMWaveformGenerator creates a default CCSDS TM waveform generator
System object.

tmWaveGen = ccsdsTMWaveformGenerator(Name,Value) sets “Properties” on page 4-3 using
one or more name-value pairs. For example,
ccsdsTMWaveformGenerator("WaveformSource", "flexible advanced coding and
modulation", "ACMFormat",b20) specifies the CSSDS TM waveform source as flexible advanced
coding and modulation standard with ACM format as 20 for the generated waveform.

4-2

ccsdsTMWaveformGenerator

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

General

WaveformSource — CCSDS TM waveform source
"synchronization and channel coding" (default) | "flexible advanced coding and
modulation"

CCSDS TM waveform source, specified as one of these values.

* "synchronization and channel coding" — Use this option to set the waveform to CCSDS
TM synchronization and channel coding, as specified in CCSDS 131.0-B-3 [1].

+ "flexible advanced coding and modulation" — Use this option to set the waveform to
CCSDS f{lexible advanced coding and modulation for high rate TM applications, as specified in
CCSDS 131.2-B-1 [3].

Data Types: char | string

ACMFormat — ACM format
1 (default) | integer in the range [1, 27]

Adaptive coding and modulation (ACM) format, specified as an integer in the range [1, 27], as
specified in CCSDS 131.2-B-1 Section 5.2.4 Table 5-2 [3].

Tunable: Yes

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".

Data Types: double | uint8

NumBytesInTransferFrame — Number of bytes in one transfer frame
223 (default) | integer in the range [1, 2048]

Number of bytes in one transfer frame, specified as an integer in the range [1, 2048].

Dependencies
To enable this property, one of these conditions should be satisfied:

* SetWaveformSource property to "synchronization and channel coding" and the
ChannelCoding property to "none", "convolutional", or "LDPC" on stream of sync marked
transfer frame (SMTF).

* SetWaveformSource property to "flexible advanced coding and modulation". In this
case, the minimum number of NumBytesInTransferFrame is 223.

4-3

4 System Objects

4-4

For other values of ChannelCoding, this NumBytesInTransferFrame property is calculated
internally based on other properties.

Data Types: double | uint16

HasRandomizer — Option for randomizing data
1 or true (default) | @ or false

Option for randomizing the data, specified as a numeric or Logical value of 1 (true) or 0 (false).
Set this value to 1 (true) to randomize the data present in the channel access data unit (CADU).

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

When you set the ChannelCoding property to "LDPC" and IsLDPCOnNSMTF property to 1 (true),
this property is not applicable, and is set to 1 (true).

Data Types: double | logical

HasASM — Option for inserting ASM
1 or true (default) | @ or false

Option for inserting attached sync marker (ASM), specified as a numeric or Logical value of 1
(true) or 0 (false). Set this value to 1 (true) to indicate the data in CADU is attached with ASM.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

When you set the ChannelCoding property to "LDPC" and IsLDPCOnSMTF property to 1 (true),
this property is not applicable, and is set to 1 (true).

Data Types: double | logical

PCMFormat — PCM format
"NRZ-L" (default) | "NRZ-M"

Pulse code modulation (PCM) format to select the PCM coding in the CCSDS TM waveform, specified
as one of these values.

* "NRZ-L" — NRZ-level
* "NRZ-M" — NRZ-mark

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the Modulation property to "BPSK", "QPSK", "8PSK", "0OPSK", or "PCM/PSK/PM".

Data Types: char | string
Channel Coding

ChannelCoding — Forward error correction coding scheme
"RS" (default) | "none" | "convolutional” | "concatenated" | "turbo" | "LDPC"

ccsdsTMWaveformGenerator

Forward error correction coding scheme, specified as one of these values.

* "none"

o "RS"

* "convolutional"
* "concatenated"
e "turbo"

« "LDPC"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

Data Types: char | string

NumBitsInInformationBlock — Number of bits in turbo or LDPC message
7136 (default) | 1784 | 3568 | 8920 | 1024 | 4096 | 16384

Number of bits in the turbo or lower density parity check (LDPC) message, specified as one of these
values.

* 1784, 3568, 7136, or 8920 — Use one of these values when you set the ChannelCoding property
to "turbo".

* 1024, 4096, 16384, or 7136 — Use one of these values when you set the ChannelCoding
property to "LDPC".

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "turbo" or "LDPC".

Data Types: double | uint8

ConvolutionalCodeRate — Code rate of convolutional code
II1/2II (default) | II2/3II | II3/4II | II5/6II | II7/8II

Code rate of convolutional code, specified as a one of these values.

. 172"
. "2/3"
. "3/4"
. "5/6"
. "7/8"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "convolutional" or "concatenated".

When you set the ChannelCoding property to "concatenated", the numeric value of the code rate
also depends on the constituent Reed-Solomon (RS) code. You can obtain the actual numeric value for
any code from the output field ActualCodeRate of the info object function.

4 System Objects

4-6

Data Types: char | string

CodeRate — Code rate of turbo or LDPC code
"1/2" (for turbo code) (default) | "7/8" (for LDPC code) (default) | "2/3" | "1/3" | "1/4" | "1/6" |
"4/5"

Code rate of turbo or LDPC code, specified as one of these values.

e "1/2","1/3","1/4",0r "1/6" — Use one of these values when you set the ChannelCoding
property to "turbo".

e "1/2","2/3","4/5",0r "7/8" — Use one of these values when you set the ChannelCoding
property to “LDPC".

Note When you set the ChannelCoding property to "LDPC" and the
NumBitsInInformationBlock property to 7136, the CodeRate must be "7/8".

For an LDPC code, setting CodeRate to 7/8 implies an actual code rate numeric value of 223/255.
You can obtain the actual numeric value for any code from the output field ActualCodeRate of the
info object function.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "turbo" or "LDPC".

Data Types: char | string

RSMessageLength — Number of bytes in one RS message block
223 (default) | 239

Number of bytes in one RS message block, specified as 223 or 239.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | uint8

RSInterleavingDepth — Interleaving depth of RS code
1 (default) |2 |3]4|5]|8

Interleaving depth of the RS code, specified as 1, 2, 3, 4, 5, or 8. The interleaving depth is the
number of RS codewords in one code block.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | uint8

IsRSMessageShortened — Option to shorten RS code
0 or false (default) | 1 or true

ccsdsTMWaveformGenerator

Option to shorten the RS code, specified as a numeric or Llogical value of @ (false) or 1 (true). Set
this value to 1 (true) to shorten the RS code.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".

Data Types: double | logical

RSShortenedMessageLength — Number of bytes in RS shortened message block
223 (default) | integer in the range [1, RSMessagelLength]

Number of bytes in the RS shortened message block, specified as an integer in the range [1,
RSMessagelengthl].

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding", the ChannelCoding property to "RS" or "concatenated", and the
IsRSMessageShortened property to 1 (true).

Data Types: double | uint8

IsLDPCOnSMTF — Option for using LDPC on stream of SMTF
0 or false (default) | 1 or true

Option for using LDPC on the stream of a sync marked transfer frame (SMTF), specified as a numeric
or logical value of @ (false) or 1 (true). Set this value to 1 (true) to indicate LDPC on the stream
of SMTF as specified in CCSDS 131.0-B-3 Section 8 of the TM synchronization and channel coding
standard [1]. To indicate LDPC on the transfer frame, set this value to 0 (false).

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "LDPC".

Data Types: double | logical

LDPCCodeBlockSize — Number of LDPC codewords in LDPC code block of stream of SMTF
1 (default) | integer in the range [1, 8]

Number of LDPC codewords in the LDPC code block of the stream of SMTF, specified as an integer in
the range [1, 8].

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding", the ChannelCoding property to "LDPC", and the IsLDPCOnSMTF property to true.

Data Types: double | uint8

Digital Modulation and Filter

Modulation — Modulation scheme

"QPSK" (default) | "BPSK" | "8PSK" | "0QPSK" | "GMSK" | "PCM/PSK/PM" | "PCM/PM/biphase-L" |
"4D-8PSK-TCM"

Modulation scheme used in CCSDS TC waveform, specified as one of these values.

4 System Objects

4-8

. "QPSK"
. "BPSK"
. "8PSK"
. "0QPSK"
.« "GMSK"

+ "PCM/PSK/PM"
* "PCM/PM/biphase-L"
+ "4D-8PSK-TCM"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

Data Types: char | string

PulseShapingFilter — Pulse shaping filter
"root raised cosine" (default) | "none"

Pulse shaping filter, specified as "root raised cosine" or "none".
Dependencies
To enable this property, one of these conditions must be satisfied:

* SetWaveformSource property to "synchronization and channel coding" and the
Modulation property to "BPSK", "QPSK", "8PSK", or "4D-8PSK-TCM".

* SetWaveformSource property to" flexible advanced coding and modulation”.
Data Types: char | string

RolloffFactor — Roll-off factor of SRRC baseband filter
0.35 (default) | scalar in the range [0, 1]

Roll-off factor of the square root raised cosine (SRRC) baseband filter, specified as a scalar in the
range [0, 1].

Note This property is not applicable when you set the PulseShapingFilter property to "none"
for either value of the WaveformSource property.

Dependencies
To enable this property, one of these conditions must be satisfied:

* SetWaveformSource property to "synchronization and channel coding" and the
Modulation property to either "BPSK", "QPSK", "8PSK", "0QPSK", or "4D-8PSK-TCM".

* SetWaveformSource property to "flexible advanced coding and modulation".
Data Types: double

FilterSpanInSymbols — Filter span in number of symbols
10 (default) | positive integer

ccsdsTMWaveformGenerator

Filter span in number of symbols, specified as a positive integer.

The ccsdsTMWaveformGenerator System object truncates the infinite impulse response of the ideal
root raised cosine filter to this value.

Note This property is not applicable when you set the PulseShapingFilter property to "none"
for either value of the WaveformSource property.

Dependencies
To enable this property, one of these conditions must be satisfied:

* SetWaveformSource property to "synchronization and channel coding" and the
Modulation property to either "BPSK", "QPSK", "8PSK", "0QPSK", or "4D-8PSK-TCM".

* SetWaveformSource property to "flexible advanced coding and modulation".
Data Types: double | uint32

BandwidthTimeProduct — Bandwidth time product for GMSK modulator
0.25 (default) | 0.5

Bandwidth time product for the Gaussian minimum shift keying (GMSK) modulator, specified as 0.25
or 0.5.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "GMSK".

Data Types: double

ModulationEfficiency — Modulation efficiency of 4D-8PSK-TCM
2 (default) | 2.25]2.5|2.75

Modulation efficiency of 4D-8PSK trellis coded modulator (TCM), specified as 2, 2.25, 2.5, or 2.75.
This property indicates the number of bits for each complex baseband symbol.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "4D-8PSK-TCM".

Data Types: double

SubcarrierWaveform — Type of waveform to PSK-modulate NRZ data
"sine" (default) | "square"

Type of waveform to PSK-modulate the non-return-to-zero (NRZ) data, specified as "sine" or
"square".

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".

Data Types: char | string

4-9

4 System Objects

ModulationIndex — Modulation index in residual carrier phase modulation
0.4 (default) | scalar in the range [0.2, 2]

Modulation index in the residual carrier phase modulation, specified as a scalar in the range [0.2, 2].
Units are in radians.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".

Data Types: double

SymbolRate — Coded symbol rate
2000 (default) | positive scalar

Coded symbol rate in Hz, specified as a positive scalar.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".

Data Types: double

SubcarrierToSymbolRateRatio — Ratio of subcarrier frequency to symbol rate
4 (default) | integer in the range [1, 50]

Ratio of the subcarrier frequency to the symbol rate, specified as an integer in the range [1, 50].

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".

Data Types: double | uint8

SamplesPerSymbol — Number of samples per symbol
10 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

This property is applicable for either input value of the WaveformSource property.

Dependencies
To enable this property, one of these conditions must be satisfied:

* Set the Modulation property to "0QPSK", "PCM/PSK/PM", or "GMSK".
* Set the PulseShapingFilterto "root raised cosine".

Data Types: double | uint8

HasPilots — Option for inserting pilot symbols
0 or false (default) | 1 or true

Option for inserting pilot symbols within data, specified as a numeric or Logical value of 0 (false)
or 1 (true). Set this value to 1 (true) to indicate pilots are inserted, as described in CCSDS flexible
advanced coding and modulation scheme for high rate TM standard [3].

4-10

ccsdsTMWaveformGenerator

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".

Data Types: double | Llogical

ScramblingCodeNumber — Scrambling code number
0 (default) | integer in the range [0, (28 - 2)]

Scrambling code number for flexible advanced coding and modulation for high rate TM applications
standard [3], specified as an integer in the range [0, (2! - 2)].

ScramblingCodeNumber is used to randomize the complex baseband symbols.

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".

Data Types: double | uint32
Read-Only

NumInputBits — Minimum number of bits required to generate waveform
integer

This property is read-only.
Minimum number of input bits to generate a waveform, returned as an integer.

The number of input bits must be an integer multiple of NumInputBits.

Data Types: double

MinNumTransferFrames — Minimum number of transfer frames for nonempty output
integer

This property is read-only.

Minimum number of transfer frames for a nonempty System object output, returned as an integer.
When you set the WaveformSource property to "flexible advanced coding and
modulation”, orto "synchronization and channel coding" with the IsLDPCOnSMTF

property set to 1 (true), System object output is empty until it has sufficient input to process through
channel coding and modulation.

Data Types: double

Usage

Syntax

txWaveform = tmWaveGen(bits)
[txWaveform,encodedBits] = tmWaveGen(bits)

4-11

4 System Objects

4-12

Description

txWaveform = tmWaveGen(bits) generates a CCSDS TM time-domain waveform for the
corresponding input bits.

[txWaveform,encodedBits] = tmWaveGen(bits) also returns the bits obtained after TM
synchronization and channel coding sublayer operations.

Input Arguments

bits — Information bits
binary-valued column vector

Information bits, in the form of transfer frames, specified as a binary-valued column vector. The
length of this vector must be an integer multiple of the number of bits in one transfer frame. The
NumInputBits property indicates the number of bits in one transfer frame.

Data Types: double | int8 | logical
Output Arguments

txWaveform — Generated CCSDS TM time-domain waveform
column vector

Generated CCSDS TM time-domain waveform, returned as a column vector. This output is generated
in the form of complex in-phase quadrature (IQ) samples.

Data Types: double

encodedBits — Output bits obtained after TM synchronization and channel coding sublayer
operations
binary-valued column vector

Output bits obtained after TM synchronization and channel coding sublayer operations, returned as a
binary-valued column vector.

Data Types: double | int8 | logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to ccsdsTMWaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

ccsdsTMWaveformGenerator

isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Generate CCSDS TM Waveform for Synchronization and Channel Coding Scheme

Generate a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) waveform for
the synchronization and channel coding standard, for multiple transfer frames. Visualize the
waveform by using a spectrum plot.

Create a CCSDS TM System object. Set the waveform type as synchronization and channel
coding with GMSK-modulated concatenated codes.

tmWaveGen = ccsdsTMWaveformGenerator;

tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "concatenated";

tmWaveGen.Modulation = "GMSK";

tmWaveGen.RSMessageLength = 239;

tmWaveGen.RSInterleavingDepth = 2;
tmWaveGen.BandwidthTimeProduct = 0.5;

disp(tmWaveGen)

ccsdsTMWaveformGenerator with properties:

WaveformSource: "synchronization and channel coding"
HasRandomizer: true
HasASM: true

Channel coding
ChannelCoding: "concatenated"
ConvolutionalCodeRate: "1/2"
RSMessagelLength: 239
RSInterleavingDepth: 2
IsRSMessageShortened: false

Digital modulation and filter

Modulation: "GMSK"

BandwidthTimeProduct: 0.5000
SamplesPerSymbol: 10

Use get to show all properties

Specify the number of transfer frames.

numTF = 15;
waveform = []; % Initialize waveform as null

Generate the CCSDS TM waveform for the synchronization and channel coding standard by using
multiple System object calls.

rng default % For reproducible results

for iTF = 1:numTF
bits = randi([0 1], tmWaveGen.NumInputBits,1);
waveform = [waveform; tmWaveGen(bits)];

end

4-13

4 System Objects

Frocessing

4-14

Create a spectrum analyzer System object to display the frequency spectrum of the generated CCSDS
TM time-domain waveform.

BW = 36€6; % Typical satellite channel bandwidth

Fsamp = tmWaveGen.SamplesPerSymbol*BW;

scope = spectrumAnalyzer('SampleRate',Fsamp, ...
'AveragingMethod', 'Exponential');

scope (waveform)

ESTIMATIOM MEASUREMEMNTS SPECTRUM SPECTRAL MASK ~ CHANNEL MEASUREMENTS

0
Frequency (MHz)

VBW = 5.90069 kHz RBW =351.563 kHz Sample Rate = 360.000 MHz Frames =1 T = 0.00342666

Generate CCSDS TM Waveform for Flexible Advanced Coding and Modulation Scheme

Generate a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) waveform for
the flexible advanced coding and modulation scheme for high rate TM applications standard, for one
physical layer (PL) frame. Visualize the waveform by using a scatter plot.

Create a CCSDS TM System object, and then specify its properties.

tmWaveGen = ccsdsTMWaveformGenerator;

tmWaveGen.WaveformSource = "flexible advanced coding and modulation";
tmWaveGen.ACMFormat = 17; % 16APSK

tmwWaveGen.PulseShapingFilter = "none";

disp(tmWaveGen)

ccsdsTMWaveformGenerator with properties:

ccsdsTMWaveformGenerator

WaveformSource: "flexible advanced coding and modulation"
ACMFormat: 17
NumBytesInTransferFrame: 223

Channel coding
No properties.

Digital modulation and filter
PulseShapingFilter: "none"
HasPilots: false
ScramblingCodeNumber: 0

Use get to show all properties
Calculate the number of transfer frames in one PL frame.

NumTFInOnePL = tmWaveGen.MinNumTransferFrames*16; % One PL frame consists of 16 codewords, as sp
waveform = []; % Initialize waveform as null

Generate the CCSDS TM waveform for the flexible advanced coding and modulation scheme for high
rate TM applications standard.

rng default % For reproducible results

for iTF = 1:NumTFInOnePL
bits = randi([0 1], tmWaveGen.NumInputBits,1);
waveform = [waveform; tmWaveGen(bits)];

end

Display the scatter plot of the constellation for the generated waveform.

scatterplot(waveform);
legend off;

4-15

4 System Objects

4-16

Scatter plot

n-Phase

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;

tmwWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;

tmWaveGen.Modulation = "QPSK";

tmWaveGen.CodeRate = "1/2";

disp(tmWaveGen)

ccsdsTMWaveformGenerator with properties:

WaveformSource: "synchronization and channel coding"
HasRandomizer: true
HasASM: true
PCMFormat: "NRZ-L"

Channel coding

ccsdsTMWaveformGenerator

ChannelCoding: "LDPC"
NumBitsInInformationBlock: 1024
CodeRate: "1/2"
IsLDPCONSMTF: false
Digital modulation and filter
Modulation: "QPSK"
PulseShapingFilter: "root raised cosine"
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 10

Use get to show all properties

Specify the number of transfer frames.
numTF = 20;
Get the characteristic information about the CCSDS TM waveform generator.
info(tmwWaveGen)
ans = struct with fields:
ActualCodeRate: 0.5000

NumBitsPerSymbol: 2
SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.
flushFilter (tmWaveGen)

ans = 100x1 complex

-0.0772 - 0.08671
-0.0751 - 0.08591
-0.0673 - 0.07881
-0.0549 - 0.06541
-0.0388 - 0.04691
-0.0200 - 0.02501
0.0002 - 0.0012i
0.0208 + 0.0227i
0.0405 + 0.04531i
0 + 0.06531

.0587

Version History
Introduced in R2021a

4-17

4 System Objects

4-18

References

[1] CCSDS 131.0-B-3. Blue Book. Issue 3. "TM Synchronization and Channel Coding."
Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-30. Blue Book. Issue 30. "Radio Frequency and Modulation Systems - Part 1:
Earth Stations and Spacecraft." Recommendation for Space Data System Standards.
Washington, D.C.: CCSDS, February 2020.

[3] CCSDS 131.2-B-1. Blue Book. Issue 1. "Flexible Advanced Coding and Modulation Scheme for
High Rate Telemetry Applications." Recommendation for Space Data System Standards.
Washington, D.C.: CCSDS, March 2012.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsTCWaveform | ccsdsTCIdealReceiver

Objects
ccsdsTCConfig

dvbrcs2WaveformGenerator

dvbrcs2WaveformGenerator

Generate DVB-RCS2 waveform

Description

The dvbrcs2WaveformGenerator System object generates a Digital Video Broadcasting Second
Generation Return Channel over Satellite (DVB-RCS2) time-domain reference or a custom waveform.
The object implements the waveform generation aspects of ETSI EN 301 545-2 V1.2.1 (2014-11) [1].

To generate a DVB-RCS2 waveform:

1 Create the dvbrcs2WaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

rcs2WaveGen = dvbrcs2WaveformGenerator

rcs2WaveGen = dvbrcs2WaveformGenerator (Name,Value)

Description

rcs2WaveGen = dvbrcs2WaveformGenerator creates a default DVB-RCS2 waveform generator

System object.

rcs2WaveGen = dvbrcs2WaveformGenerator(Name,Value) sets properties on page 4-19 using
one or more name-value arguments. For example, 'TransmissionFormat', "SS-TC-LM" specifies
to generate a reference DVB-RCS2 waveform of spread spectrum turbo codes with linear modulation
(SS-TC-LM) format.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TransmissionFormat — Transmission format
"TC-LM" (default) | "SS-TC-LM"

Transmission format, specified as one of these values.

4-19

4 System Objects

4-20

e "TC-LM" — Turbo codes with linear modulation (TC-LM)
e "SS-TC-LM" — Spread spectrum turbo codes with linear modulation (SS-TC-LM)

Tunable: Yes

Data Types: char | string

ContentType — Frame PDU burst content type
"traffic" (default) | "logon" | "control"

Frame protocol data unit (PDU) burst content type, specified as "traffic", "logon", or
"control".

Data Types: char | string

IsCustomWaveform — Custom waveform indicator
false or O (default) | true or 1

Custom waveform indicator, specified as one of these numeric or logical values.

* 0 (false) — Generate a standard-defined reference waveform. For details, refer to ETSI EN 301
545-2 V1.2.1 (2014-11) Annex A Tables A-1 and A-2 [1].

e 1 (true) — Generate a custom waveform.

Tunable: Yes

Data Types: logical

WaveformID — Reference waveform ID
1 (default) | positive integer

Reference waveform ID, specified as one of these options.

» Integer in the range [1, 22] or [32, 49] — Use this option when you set the TransmissionFormat
property to "TC-LM".

* Integer in the range [1, 19] — Use this option when you set the TransmissionFormat property
to "SS-TC-LM".

Based on the TransmissionFormat and WaveformID properties, the System object considers the
transmission parameters according to ETSI EN 301 545-2 Annex A Table A-1 and A-2 [1].

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to false.

Data Types: double | unit8

PreBurstGuardLength — Preburst guard length
0 (default) | nonnegative integer

Preburst guard length, specified as a nonnegative integer. This length represents the number of zero-
valued symbols in the guard time that are prefixed to the burst symbols, prior to the preamble.

A value of 0 indicates no guard symbols are prefixed.

dvbrcs2WaveformGenerator

Tunable: Yes

Data Types: double

PostBurstGuardLength — Postburst guard length
0 (default) | nonnegative integer

Postburst guard length, specified as a nonnegative integer. This length represents the number of
zero-valued symbols in the guard time that are suffixed to the burst symbols, after the postamble.

In absence of the postamble, these symbols are suffixed directly after the payload symbols.

Tunable: Yes

Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.

Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Data Types: double

PayloadLengthInBytes — Payload length
10 (default) | positive integer

Payload length in bytes, specified as one of these options.

* Integer in the range [3, 65,535] — Use this option when you set the ContentTypeproperty to
"control" or "logon".

* Integer in the range [5, 65,535] — Use this option when you set the ContentType property to
"traffic".

This length represents the size of the input data to the turbo encoder of this System object. Input
data includes the frame PDU and the cyclic redundancy check (CRC) bits.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

MappingScheme — Mapping scheme
"pi/2-BPSK" (default) | "QPSK" | "8PSK" | "16QAM"

Mapping scheme, specified as one of these values.

4-21

4 System Objects

* "pi/2-BPSK"
. "QPSK"

. "8PSK"

. "16QAM"

Dependencies

To enable this property, set the TransmissionFormat property to "TC-LM" and the
IsCustomWaveform property to true.

Note When you set the TransmissionFormat property to "SS-TC-LM", the only valid value of
MappingScheme is "pi/2-BPSK".

Data Types: char | string

CodeRate — Code rate
II1/3II (default)| II1/2II | II2/3II | II3/4II | II4/5II | II5/6II | II6/7II | II7/8II

Code rate, specified as one of these values.

e "2/3","3/4","4/5","5/6", "6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "8PSK".

e« "3/4","4/5","5/6","6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "16QAM".

All code rates are applicable if MappingScheme property is set to "pi/2-BPSK" or "QPSK".

This code rate is passed as an input to the turbo encoder function, that is, dvbrcs2TurboEncode, of
this System object.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: char | string

PreambleLength — Preamble length
8 (default) | integer in the range [0, 255]

Preamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of preamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of preamble
length is chips.

A preamble of this specified length is prefixed to the burst sequence, prior to the modulation.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.

4-22

dvbrcs2WaveformGenerator

Data Types: double

PostambleLength — Postamble length
8 (default) | integer in the range [0, 255]

Postamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of postamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of postamble
length is chips.

A postamble of this specified length is suffixed to the burst sequence, prior to the modulation.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotPeriod — Pilot period
0 (default) | integer in the range [0, 4095]

Pilot period, specified as an integer in the range [0, 4095]. A value of 0 indicates no pilots are
inserted.

When you set the TransmissionFormat property to "TC-LM", the unit of pilot period is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot period is chips.

The pilot period represents the length of the sequence from first symbol of a pilot block to the first
symbol of the next pilot block in symbols or chips.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotBlockLength — Pilot block length
1 (default) | integer in the range [1, 255]

Pilot block length, specified as an integer in the range [1, 255].

After every PilotPeriod symbols or chips, a pilot block of this specified length is added in the burst
sequence.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to
a positive integer.

Data Types: double

4-23

4 System Objects

4-24

PermutationParameters — Permutation control parameters
[9 0 0 0 0] (default) | vector

Permutation control parameters that the dvbrcs2WaveformGenerator uses to generate turbo encoder
interleaver indices, specified as a five-element vector in order: P, Q,, Q;, Q,, and Qs. P must be in the
range [9, 255], and Q,, Q,, Q,, and Q; must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to
PayloadLengthInBytes*4.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

UniqueWord — Unique word
"FFFF" (default) | character array | string scalar

Unique word, specified as a character array or string scalar.

A unique word is a string of hexadecimal values that include the combination of the preamble, one
pilot block, and the postamble sequence. Pilots are included only when you set the PilotPeriod
property as nonzero.

To know the minimum required length of the unique word, use this formula.

ceil((PreambleLength + PostamblelLength + PilotBlockLength)*bps/4); where bps is the bits
per seconds, determined by the MappingScheme specified.

For example, if PreambleLength = 9, PostamblelLength = 8, PilotBlockLength =1, and
MappingScheme = "QPSK" (bps = 2) then the minimum required length of the unique word by using
this formula:

ceil((9 + 8 + 1)*2/4) = 9 (hexadecimal values)

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: char | string

SpreadingFactor — Spreading factor
2 (default) | integer in the range [2, 16]

Spreading factor, specified as an integer in the range [2, 16].

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

dvbrcs2WaveformGenerator

Data Types: double

ScramblingPolynomial — Scrambling polynomial
16-bit zero vector (default) | 16-bit vector of binary values | numeric vector

Scrambling polynomial, specified as one of these options.

 16-bit vector of binary values from the most significant bit (MSB), 2'6, to least significant bit
(LSB), z!. Each element of this vector corresponds to the coefficient of z and its exponent,
specified from MSB to LSB. For details on the binary representation, see ETSI EN 301 545-2
Section 7.3.7.1.5.

* Numeric vector containing the exponents of z for nonzero terms of the polynomial in descending
order.

The scrambling polynomial determines the shift register feedback connection to generate the
spreading sequence.

The coefficient of 20 is always 1.

The default value of this scrambling polynomial indicates the default scrambling sequence provided
in the standard. When you set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to false, all of the reference waveforms use this default scrambling
sequence.

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

Data Types: double | logical

ScramblingInitialConditions — Scrambling initial conditions
[111111111111111 1] (default)| 1] 16-bitvector ofbinary values

Scrambling initial conditions of the shift register, specified as one of these options.

* 1 — Use this option to set the initial condition of each cell of the shift register to this value.

 16-bit vector of binary values from the MSB (2'6) to LSB (2!) — Use this option to set the initial
condition of each cell of the shift register to the corresponding element in this vector.

For this System object to generate a nonzero sequence, you must specify at least one nonzero
element in this vector.

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
ScramblingPolynomial property to a value other than the default value.

Data Types: double | logical

FramePDULength — Frame PDU length
48 (default) | positive integer

4-25

4 System Objects

This property is read-only.
Frame PDU length, returned as a positive integer.

The frame PDU length indicates the length in bits of the input data to this System object. This length
is calculated by subtracting the length of the CRC sequence from the payload length in bits.

Data Types: double
Usage

Syntax
burst = rcs2WaveGen(pdu)
Description

burst = rcs2WaveGen(pdu) generates a DVB-RCS2-based burst symbols for the corresponding
input binary sequence.

Input Arguments

pdu — Frame PDU
binary-valued column vector

Frame PDU, specified as a binary-valued column vector.

Data Types: double | Logical
Output Arguments

burst — DVB-RCS2-based burst samples
column vector

DVB-RCS2-based burst samples, returned as a column vector.

The System object outputs these burst symbols (including the guard symbols) post modulation and
pulse shaping.

Data Types: double
Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbrcs2WaveformGenerator
info Characteristic information about object

Common to All System Objects
step Run System object algorithm

4-26

dvbrcs2WaveformGenerator

release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object
Examples

Generate Reference DVB-RCS2 Waveform
Generate a reference DVB-RCS2 time-domain waveform with SS-TC-LM format.

Create and then set the properties of a DVB-RCS2 waveform generator System object™.
wg = dvbrcs2WaveformGenerator;
wg.TransmissionFormat = "SS-TC-LM";
wg.ContentType = "logon";
wg.WaveformID = 10;
wg.SamplesPerSymbol = 6;
Display the properties of the waveform generator.
disp(wg)
dvbrcs2WaveformGenerator with properties:
TransmissionFormat: "SS-TC-LM"
ContentType: "logon"
IsCustomWaveform: false
WaveformID: 10
PreBurstGuardLength: 0
PostBurstGuardLength: 0
FilterSpanInSymbols: 10
SamplesPerSymbol: 6
Use get to show all properties

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst samples.

txWaveform = wg(framePDU);

Generate Custom DVB-RCS2 Waveform
Generate a custom DVB-RCS2 time-domain waveform having TC-LM format.

Create and then set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.IsCustomWaveform = true;

4-27

4 System Objects

wg.ContentType = "control";
wg.MappingScheme = "QPSK";

wg.CodeRate = "2/3";

wg.PreambleLength = 10;
wg.PostamblelLength = 8;
wg.PermutationParameters = [13 4 2 1 2];
wg.UniqueWord = "FFFFFFFFF";

Display the properties of the waveform generator.
disp(wg)
dvbrcs2WaveformGenerator with properties:
TransmissionFormat: "TC-LM"
ContentType: "control"
IsCustomWaveform: true
PreBurstGuardLength: 0
PostBurstGuardLength: 0
FilterSpanInSymbols: 10
SamplesPerSymbol: 4
PayloadLengthInBytes: 10
Use get to show all properties
Generate a frame PDU.
framePDU = randi([0 1],wg.FramePDULength,1);
Generate the DVB-RCS2-based burst samples.

txWaveform = wg(framePDU) ;

Generate Multiple Content Type DVB-RCS2 Bursts
Generate multiple ContentType DVB-RCS2 bursts.

Set the ContentType of the DVB-RCS2 waveform generator System Object™ as lLogon.

wg = dvbrcs2WaveformGenerator;
wg.ContentType = "logon";

Generate a frame PDU.

framePDUl = randi([0 1],wg.FramePDULength,1);
Generate the DVB-RCS2 logon burst samples.
txWaveforml = wg(framePDU1l);

Now, generate the DVB-RCS2 traffic burst samples.
% ContentType property is tunable
wg.ContentType = "traffic";

framePDU2 = randi([0 1],wg.FramePDULength,1);
txWaveform2 = wg(framePDU2);

4-28

dvbrcs2WaveformGenerator

Version History
Introduced in R2021b

References

[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second
Generation Interactive Satellite Systems (DVB-RCS2).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
dvbrcs2TurboEncode | dvbrcs2BitRecover

Objects
dvbrcs2RecoveryConfig

4-29

4 System Objects

4-30

dvbs2WaveformGenerator

Generate DVB-S2 waveform

Description

The dvbs2WaveformGenerator System object generates a Digital Video Broadcasting Satellite
Second Generation (DVB-S2) time-domain waveform consisting of a single or multiple physical layer
frames. The object implements the waveform generation aspects of ETSI EN 302 307-1 V1.4.1
(2014-11) [1].

To generate a DVB-S2 waveform:

1 Create the dvbs2WaveformGenerator object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

s2waveGen = dvbs2WaveformGenerator

s2waveGen = dvbs2WaveformGenerator (Name,Value)
Description

s2waveGen = dvbs2WaveformGenerator creates a default DVB-S2 waveform generator System
object.

s2waveGen = dvbs2WaveformGenerator(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example,
dvbs2WaveformGenerator('NumInputStreams',4, 'UPL',100) specifies four input streams,
each with a user packet length of 100 bits.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StreamFormat — Input stream format
"TS" (default) | "GS"

Input stream format, specified as one of these values.

dvbs2WaveformGenerator

* "TS" — For transport stream format
¢ "GS" — For generic stream format

Data Types: char | string

NumInputStreams — Number of input streams
1 (default) | integer in the range [1, 256]

Number of input streams, specified as an integer in the range [1, 256].

Data Types: double

UPL — User packet length
0 (default) | nonnegative integer | vector of nonnegative integers

User packet (UP) length in bits, specified as one of these options.

* Nonnegative integer — Use this option with single-input and multi-input streams. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be equal to
the integer value of the UPL property.

* Vector of nonnegative integers — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be the size of
the corresponding element in this vector. The length of this vector must be equal to
NumInputStreams.

Note When you specify UPL as a multi-input stream, all UPs must be either packetized or in a
continuous stream. Mixing stream types is not supported.

The maximum value of UPL as an integer scalar or an integer element in the row vector must be less
than or equal to the corresponding DFL property value.

For a generic continuous stream, set UPL to 0.
Dependencies

To enable this property, set the StreamFormat property to "GS". If you set the StreamFormat
property to "TS", the UPL is fixed to 1504 bits.

Data Types: double

FECFrame — FEC frame format
"normal" (default) | "short"

Forward error correction (FEC) frame format, specified as one of these two options.

* "normal" — Sets the low density parity-check (LDPC) codeword length to 64,800 bits
* "short" — Sets the LDPC codeword length to 16,200 bits

Tunable: Yes

Data Types: char | string

MODCOD — Modulation scheme and FEC rate
1 (default) | integer in the range [1, 28] | vector of integers in the range [1, 28]

4-31

4 System Objects

4-32

Modulation scheme and FEC rate for input transmission, specified as one of these options, as defined
in ETSI EN 302 307-1 Section 5.5.2.2 Table 12 [1].

* Integer in the range [1, 28] — Use this option with single-input and multi-input streams. If you set
the NumInputStreams property to a value greater than 1, each stream has the same modulation
scheme and coding rate.

* Vector of integers in the range [1, 28] — Use this option with multi-input streams only. If you set
the NumInputStreams property to a value greater than 1, each input stream has a modulation
scheme and coding rate equal to the corresponding element in this vector. The length of this
vector must be equal to NumInputStreams.

Note MODCOD values 11, 17, 23, and 28 are not valid when you set the FECFrame property to
"short" (as specified in ETSI EN 302 307-1 Section 5.3 Table 5b [1]).

Tunable: Yes

Data Types: double

DFL — Data field length
15,928 (default) | integer in the range [1, (Kzcy—80)] | vector of integers in the range [1, (Kgcy—80)]

Data field (DF) length in bits, specified as one of these options. Kgcy is the uncoded BCH block
length, as specified in ETSI EN 302 307-1 Section 5.3 Table 5a and 5b [1].

* Integer in the range [1, (Kgcy—80)] — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, the length of the DF in
baseband frame of each stream is the same value.

* Vector of integers in the range [1, (Kzcy—80)] — Use this option with multi-input streams only. If
you set the NumInputStreams property to a value greater than 1, the length of the data field in
the baseband frame of each stream must be the size of the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

Tunable: Yes

Data Types: double

ScalingMethod — Constellation amplitude scaling method
"outer radius as 1" (default) | "unit average power"

Constellation amplitude scaling method, specified as "outer radius as 1" or "unit average
power".

Dependencies

To enable this property, set the MODCOD property to a value in the range [18, 28], which indicates only
16APSK and 32APSK modulation schemes.

Data Types: char | string

HasPilots — Pilot block indication
0 or false (default) | 1 or true | vector of Logical values

Pilot block indication, specified as a logical value of ® (false), 1 (true), or a vector of Logical
values. Set this value to 1 (true) to indicate pilots are inserted in the physical layer frame.

dvbs2WaveformGenerator

If you set the NumInputStreams property to a value greater than 1, you can configure pilots for each
stream by specifying this property as a vector. The length of this vector must be equal to
NumInputStreams.

Tunable: Yes

Data Types: Llogical

RolloffFactor — Transmit filter roll-off factor
0.35 (default) |0.25]0.2

Transmit filter roll-off factor for baseband pulse shaping, specified as 0.35, 0.25, or 0. 2.
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.

Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Data Types: double

ISSYI — Input stream synchronization indicator
0 or false (default) | 1 or true

Input stream synchronization (ISSY) indicator, specified as a logical value of 0 (false) or 1 (true).
To indicate that input stream synchronization is used, set this value to 1 (true).

Dependencies

To enable this property, set the NumInputStreams property to a value greater than 1 and set the
UPL property to a nonzero value.

Data Types: logical

ISCRFormat — Input stream clock reference format
"short" (default) | "long"

Input stream clock reference format, specified as one of these options.

* "short" — Indicates the length of ISSY as 2 bytes
* "long" — Indicates the length of ISSY as 3 bytes
When you set the StreamFormat property to "GS", NumInputStreams property to a value greater

than 1, UPL property to a nonzero value, and ISSYI to 1 (true), only the "short" option of this
ISCRFormat property is applicable.

4-33

4 System Objects

4-34

Dependencies

To enable this property, set the StreamFormat property to "TS", the NumInputStreams property to
a value greater than 1, and the ISSYI property to 1 (true).

Data Types: char | string

MinNumPackets — Minimum number of packets required to create DF
integer in the range [1, 58,112] | row vector of integers

This property is read-only.
Minimum number of packets required to create a DFE, returned as one of these options.

* Integer in the range [1, 58,112] — This option applies with single-input streams only.

* Row vector of integers in the range [1, 58,112] — This option applies with multi-input streams
only. If you set the NumInputStreams property to a value greater than 1, the minimum number of
packets required for each stream is equal to the corresponding element in this vector. The length
of this vector must be equal to NumInputStreams.

The value of MinNumPackets is computed based of values of DFL and UPL properties.

Dependencies

To enable this property, set the UPL property to a nonzero value.

Data Types: double
Usage

Syntax
txWaveform = s2waveGen(data)
Description

txWaveform = s2waveGen(data) generates a DVB-S2 time-domain waveform from the input
information bits.

Input Arguments

data — Input information bits
[1| binary-valued column vector | cell array of binary-valued column vectors

Input information bits, specified as one of these options. Each element of the column vector or cell
array can be of data type double, int8, or logical.

* Binary-valued column vector — Use this option with single-input streams.

To generate a dummy physical layer (PL) frame, specify data as an empty column vector.

» Cell array of binary-valued column vectors — Use this option with multi-input streams. Each
element of the array represents the corresponding input stream. The length of the cell array must
be equal to the value of the NumInputStreams property.

dvbs2WaveformGenerator

To generate a dummy frame for a particular input stream, specify the corresponding element of
the data cell array as an empty column vector.

Input data, either as a single-input or multi-input stream, must be input in one of these forms.

* Packetized stream — The number of packets in each stream must be an integer multiple of the
MinNumPackets property.

For a packetized stream, an 8-bit sync field must be included at the beginning of each packet. The
combined length of a packet and its sync bits must be equal to the corresponding value of the UPL
property.

* Continuous stream — The number of bits for each stream must be an integer multiple of the DFL
property.

Note When you set the StreamFormat property to "TS", the sync byte is fixed as 47 hex.

Data Types: double | int8 | Logical | cell
Output Arguments

txWaveform — Generated time-domain DVB-S2 waveform
column vector

Generated time-domain DVB-S2 waveform, returned as a column vector. The waveform is generated
in the form of complex in-phase quadrature (IQ) samples and can consist of a single physical layer
frame or multiple physical layer frames.

When you set the NumInputStreams property to a value greater than 1, the data fields generated
from different input streams are merged using the round-robin technique.

Data Types: double

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbhs2WaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

isLocked Determine if System object is in use

reset Reset internal states of System object

4-35

4 System Objects

Examples

Generate DVB-S2 Waveform for Single-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation (DVB-S2) time-domain waveform
for a single-input transport stream (TS) with a single physical layer (PL) frame per stream. Visualize
the waveform using constellation plots and signal spectrum.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip', 'file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 1;

Create a DVB-S2 System object. Specify the modulation scheme and FEC rate (MODCOD) and data
field length (DFL).

s2WaveGen = dvbs2WaveformGenerator;

s2WaveGen.MODCOD = 21; % 16APSK 5/6

s2WaveGen.DFL = 39690;

s2WaveGen.HasPilots = true; % Pilot insertion indication
disp(s2WaveGen)

dvbs2WaveformGenerator with properties:

StreamFormat: "TS"
NumInputStreams: 1
FECFrame: "normal"
MODCOD: 21
DFL: 39690
ScalingMethod: "outer radius as 1"
HasPilots: 1
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4

Show all properties

Create a bit vector of information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0611 1]"; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2WaveGen.MinNumPackets*numFrames;

txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];

data = txPkts(:);

4-36

dvbs2WaveformGenerator

Generate a DVB-S2 time-domain waveform using the information bits, data.

txWaveform = s2WaveGen(data);

Visualize the constellation plot for the generated DVB-S2 time-domain waveform by creating a
constellation diagram System object.

sps = s2WaveGen.SamplesPerSymbol;

constel = comm.ConstellationDiagram('ColorFading"',true,
'ShowTrajectory',0,
'SamplesPerSymbol', sps,
'ShowReferenceConstellation', false,
‘XLimits',[-0.5 0.5], 'YLimits',[-0.5 0.5]);

plHeaderLen = 90*sps; % PL header length
constel (txWaveform(plHeaderLen+1l:end));
release(constel);

4-37

4 System Objects

MEASUREMENTS

Stopped

Display the frequency spectrum of the generated DVB-S2 time-domain waveform by creating a
spectrum analyzer System object.

BW = 36€6; % Typical satellite channel bandwidth
Fsym = BW/(1+s2WaveGen.RolloffFactor);

Fsamp = Fsym*sps;

scope = spectrumAnalyzer('SampleRate',Fsamp);

scope (txWaveform)

4-38

dvbs2WaveformGenerator

MEASUREMENTS

Processing VBW = 1.74835 kHz REW = 104.167 kHz Sample Rate = 106.667 MHz Frames =1 T = 0.000625716

Generate DVB-S2 Waveform for Multi-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation (DVB-S2) time-domain waveform
for a multi-input generic stream (GS) with multiple physical layer (PL) frames per stream.

This example requires MAT-files with LDPC parity matrices. If they are not available on the path,
execute the following commands to download and unzip the MAT-files.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file'")
if ~exist('s2xLDPCParityMatrices.zip', 'file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 3;

Create a DVB-S2 System object with variable coding and modulation configuration for a multi-input
GS. Specify the modulation scheme and FEC rate (MODCOD) and data field length (DFL).

4-39

4 System Objects

4-40

s2WaveGen = dvbs2WaveformGenerator;

s2WaveGen.StreamFormat = "GS";
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [6 24]; % QPSK 2/3 and 32APSK 3/4

s2WaveGen.DFL = [42960 48328];
s2WaveGen.HasPilots = true;
s2WaveGen.SamplesPerSymbol = 10;
disp(s2WaveGen)

dvbs2WaveformGenerator with properties:

StreamFormat: "GS"
NumInputStreams: 2
UPL: O
FECFrame: "normal"
MODCOD: [6 24]
DFL: [42960 48328]
ScalingMethod: "outer radius as 1"
HasPilots: 1
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 10

Create a bit vector of input information bits for each GS user packet.
data = cell(s2WaveGen.NumInputStreams,1);
for i = 1:s2WaveGen.NumInputStreams

data{i} = randi([0 1],s2WaveGen.DFL(i)*numFrames,1, 'int8");
end

Generate the DVB-S2 time-domain waveform with the input information bits.

txWaveform = s2WaveGen(data);

Generate DVB-S2 Dummy PL Frame
Generate a DVB-S2 dummy PL frame for a single-input transport stream.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip', 'file"')

url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices

websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Create a default DVB-S2 System object.
s2WaveGen = dvbs2WaveformGenerator;

Generate a PL dummy frame.

.zip';

dvbs2WaveformGenerator

data = zeros(0,1);
Generate a DVB-S2 waveform.

txWaveform = s2WaveGen(data);

Version History
Introduced in R2021a

References

[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

» For all properties that support string and cell array input, code generation is only supported with
cell array input.

* See “System Objects in MATLAB Code Generation” (MATLAB Coder).
See Also

Functions
dvbs2BitRecover

Objects
dvbs2xWaveformGenerator

4-41

4 System Objects

4-42

dvbs2xWaveformGenerator

Generate DVB-S2X waveform

Description

The dvbs2xWaveformGenerator System object generates a Digital Video Broadcasting Satellite
Second Generation extended (DVB-S2X) time-domain waveform consisting of a single or multiple
physical layer (PL) frames. The object implements the waveform generation aspects of ETSI EN 302
307-2 V1.1.1 (2015-11) [2].

To generate a DVB-S2X waveform:

1 Create the dvbs2xWaveformGenerator object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

s2xWaveGen = dvbs2xWaveformGenerator

s2xWaveGen = dvbs2xWaveformGenerator(Name,Value)
Description

s2xWaveGen = dvbs2xWaveformGenerator creates a default DVB-S2X waveform generator
System object.

s2xWaveGen = dvbs2xWaveformGenerator(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example,
dvbs2xWaveformGenerator('NumInputStreams',4, 'UPL',100) specifies four input streams,
each with a user packet length of 100 bits.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StreamFormat — Input stream format
"TS" (default) | "GS"

Input stream format, specified as one of these values.

dvbs2xWaveformGenerator

* "TS" — For transport stream format
¢ "GS" — For generic stream format

Data Types: char | string

HasTimeSlicing — Time slicing indicator
0 or false (default) | 1 or true

Time slicing indicator, specified as a logical value of 0 (false) or 1 (true). To indicate that time
slicing transmission format is used, set this value to 1 (true).

If you set this property to 1 (true), you can set the NumInputStreams property to a maximum value
of 8.

Data Types: logical

NumInputStreams — Number of input streams
1 (default) | integer in the range [1, 256]

Number of input streams, specified as an integer in the range [1, 256].

When you set the HasTImeSlicing property to true, NumInputStreams property can be specified
to a maximum value of 8.

Data Types: double

UPL — User packet length
0 (default) | nonnegative integer | vector of nonnegative integers

User packet (UP) length in bits, specified as one of these options.

* Nonnegative integer — Use this option with single-input and multi-input streams. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be equal to
the integer value of the UPL property.

* Vector of nonnegative integers — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be the size of
the corresponding element in this vector. The length of this vector must be equal to
NumInputStreams.

Note When you specify UPL as a multi-input stream, all UPs must be either packetized or in a
continuous stream. Mixing stream types is not supported.

The maximum value of UPL as an integer scalar or an integer element in the row vector must be less
than or equal to the corresponding DFL property value.

For a generic continuous stream, set UPL to 0.

Dependencies

To enable this property, set the StreamFormat property to "GS". If you set the StreamFormat
property to "TS", the UPL is fixed to 1504 bits.

Data Types: double

PLSDecimalCode — PL signalling code information
132 (default) | integer in the range [4, 249] | vector of integers in the range [4, 249]

4-43

4 System Objects

4-44

PL signalling code information, in decimal format, specified as one of these options (as described in
ETSI EN 302 307-1 Section 5.5.2.2 [1] and ETSI EN 302 307-2 Section 5.5.2.2 Table 17a [2]).

* Integer in the range [4, 249] — Use this option with single-input and multi-input streams. If you
set the NumInputStreams property to a value greater than 1, each stream has the same
modulation scheme and coding rate.

* Vector of integers in the range [4, 249] — Use this option with multi-input streams only. If you set
the NumInputStreams property to a value greater than 1, each stream has a modulation scheme
and coding rate equal to the corresponding element in this vector. The length of this vector must
be equal to NumInputStreams.

All odd integer values are considered to include pilots in PL frames.

Note Few PLSDecimalCode values are invalid in this specified value range. Invalid values include
{46, 47, 70, 71, 94, 95, 114, 128, 130, 176, 177, 188, 189, 192, 193, 196, and 197}.

To calculate the PLSDecimalCode property value for a DVB-S2X system configuration, use this
formula.

MODCOD*4 + (0 - for normal FECFrame/1 - for short FECFrame)*2 + (0 - if HasPilots property value
is false/l - if HasPilots property value is true)

For example, if MODCOD = 18 (16APSK 2/3) with short FEC frame and pilots disabled, the value of
PLSDecimalCode calculated by using this formula is:

PLSDecimalCode =18*4 + 1*2 + 0 = 74

Note For very low signal to noise ratio (VL-SNR) frames, you must set the PLSDecimalCode
property to either 129 or 131, which indicates the VL-SNR set 1 or 2, respectively.

VL-SNR frames must not be combined with regular frames.

Tunable: Yes

Data Types: double

CanonicalMODCODName — Canonical modulation scheme and code rate name
"QPSK 2/9" (default) | character vector | string scalar | cell array | string array

Canonical modulation scheme and code rate name for VL-SNR frame transmission, specified as one of
these options (as described in ETSI EN 302 307-2 Section 5.5.2.2 Table 18a [2]).

* Character vector or string scalar — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, each stream has the same
modulation scheme and coding rate.

» Cell array or string array — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, each input stream has a modulation
scheme and coding rate equal to the corresponding value in this array. The length of this array
must be equal to NumInputStreams.

Valid CanonicalMODCODName values include these options.

dvbs2xWaveformGenerator

+ "QPSK 2/9", "BPSK 1/5", "BPSK 11/45", "BPSK-S 1/5", "BPSK-S 11/45", and "BPSK
1/3" — Applicable for VL-SNR set 1

« "BPSK 1/5", "BPSK 4/15", and "BPSK 1/3" — Applicable for VL-SNR set 2

Tunable: Yes

Dependencies

To enable this property, set the PLSDecimalCode property to either 129 (for VL-SNR set 1) or 131
(for VL-SNR set 2). This property applies for only VL-SNR frame transmissions.
Data Types: char | string

DFL — Data field length
18,448 (default) | integer in the range [1, (Kzcy—80)] | vector of integers in the range [1, (Kgcy—80)]

Data field (DF) length in bits, specified as one of these options. Kgcy is the uncoded BCH block
length, as specified in ETSI EN 302 307-1 Section 5.3 Table 5a and 5b [1].

» Integer in the range [1, (Kzcy—80)] — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, the length of the DF in
baseband frame of each stream is the same value.

* Vector of integers in the range [1, (Kzcy—80)] — Use this option with multi-input streams only. If
you set the NumInputStreams property to a value greater than 1, the length of the data field in
the baseband frame of each stream must be the size of the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

Tunable: Yes

Data Types: double

ScalingMethod — Constellation amplitude scaling method
"outer radius as 1" (default) | "unit average power"

Constellation amplitude scaling method, specified as "outer radius as 1" or "unit average
power".

Dependencies

To enable this property, set the PLSDecimalCode property to a value corresponding to APSK
modulation, with the following as exception: {164, 165, 158, 159, 206, 207, 212, and 213}. The other
exceptions are QPSK and 8 PSK values: {4 to 69, inclusive; 129; 131; 132 to 137, inclusive; 142 to
147, inclusive; 216 to 235, inclusive}.

Data Types: char | string

PLScramblingIndex — PL scrambling sequence index
integer in the range [0, 7] | vector of integers in the range [0, 7]

PL scrambling sequence index, specified as one of these options (as described in ETSI EN 302 307-2
Section 5.5.4 Table 19e [2]).

» Integer in the range [0, 7] — Use this option with single-input and multi-input streams.

If you set the NumInputStreams property to a value greater than 1, each stream has the same
value of PL scrambling index.

4-45

4 System Objects

4-46

* Vector of integers in the range [0, 7] — Use this option when you set the HasTimeSlicing
property to true for multi-input streams.

If you set the NumInputStreams property to a value greater than 1, the PL scrambling index
value of each stream must be equal to the corresponding element in this vector. The length of this
vector must be equal to NumInputStreams.

To generate the PL scrambling sequence, the actual index used is PLScramblingIndex*10949.
Data Types: double

RolloffFactor — Transmit filter roll-off factor
0.35 (default) | 0.05]0.1|0.15]|0.2]0.25

Transmit filter roll-off factor for baseband pulse shaping, specified as 0.35, 0.05, 0.1, 0.15, 0.2, or
0.25.

Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.

Data Types: double

SamplesPerSymbhol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Data Types: double

ISSYI — Input stream synchronization indicator
0 or false (default) | 1 or true

Input stream synchronization (ISSY) indicator, specified as a logical value of 0@ (false) or 1 (true).
To indicate that input stream synchronization is used, set this value to 1 (true).

Dependencies

To enable this property, set the NumInputStreams property to a value greater than 1 and set the
UPL property to a nonzero value.

Data Types: logical

ISCRFormat — Input stream clock reference format
"short" (default) | "long"

Input stream clock reference format, specified as one of these options.

* "short" — Indicates the length of ISSY as 2 bytes
* "long" — Indicates the length of ISSY as 3 bytes

dvbs2xWaveformGenerator

When you set the StreamFormat property to "GS", NumInputStreams property to a value greater
than 1, UPL property to a nonzero value, and ISSYI to 1 (true), only the "short" option of this
ISCRFormat property is applicable.

Dependencies

To enable this property, set the St reamFormat property to "TS", the NumInputStreams property to
a value greater than 1, and the ISSYT property to 1 (true).

Data Types: char | string

MinNumPackets — Minimum number of packets required to create DF
integer in the range [1, 58,112] | row vector of integers

This property is read-only.
Minimum number of packets required to create a DFE, returned as one of these options.

* Integer in the range [1, 58,112] — This option applies with single-input streams only.

* Row vector of integers in the range [1, 58,112] — This option applies with multi-input streams
only. If you set the NumInputStreams property to a value greater than 1, the minimum number of
packets required for each stream is equal to the corresponding element in this vector. The length
of this vector must be equal to NumInputStreams.

The value of MinNumPackets is computed based of values of DFL and UPL properties.

Dependencies

To enable this property, set the UPL property to a nonzero value.

Data Types: double
Usage

Syntax
txWaveform = s2xWaveGen(data)
Description

txWaveform = s2xWaveGen(data) generates a DVB-S2X time-domain waveform from the input
information bits.

Input Arguments

data — Input information bits
[1| binary-valued column vector | cell array of binary-valued column vectors

Input information bits, specified as one of these options. Each element of the column vector or cell
array can be of the data type double, int8, or logical.

* Binary-valued column vector - Use this option with single-input stream.

To generate a dummy physical layer (PL) frame, specify data as an empty column vector.

4-47

4 System Objects

4-48

» Cell array of binary-valued column vectors - Use this option with multi-input streams. Each
element of the array represents the corresponding input stream. The length of the cell array must
be equal to the value of the NumInputStreams property.

To generate a dummy frame for a particular input stream, specify the corresponding element of
the data cell array as an empty column vector.

data, either single stream or multi-stream, can be input in one of these forms.

* Packetized stream - The number of packets in each stream must be an integer multiple of the
MinNumPackets property.

For a packetized stream, an 8-bit sync field must be included at the beginning of each packet. The
combined length of a packet and its sync bits must be equal to the corresponding value of the UPL
property.

* Continuous Stream - The number of bits for each stream must be an integer multiple of the DFL
property.

Note When you set the StreamFormat property to "TS", the sync byte is fixed as 47 hex.

Data Types: double | int8 | logical | cell
Output Arguments

txWaveform — Generated time-domain DVB-S2X waveform
column vector

Generated time-domain DVB-S2X waveform, returned as a column vector. The waveform is generated
in the form of complex in-phase quadrature (IQ) samples and can consist of a single physical layer
frame or multiple physical layer frames.

When you set the NumInputStreams property to a value greater than 1, the data fields generated
from different input streams are merged using the round-robin technique.

Data Types: double

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbs2xWaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input
characteristics

dvbs2xWaveformGenerator

clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object
Examples

Generate DVB-S2X Waveform for Single-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) time-domain
waveform for a single-input transport stream (TS) with a single physical layer (PL) frame per stream.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
if ~exist('s2xLDPCParityMatrices.zip','file")
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 1;

Create a DVB-S2X System object with pilot-aided PL.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.PLSDecimalCode = 133; % QPSK 13/45
% All odd PLSDecimalCode values are pilot aided

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "TS"
HasTimeSlicing: false
NumInputStreams: 1
PLSDecimalCode: 133
DFL: 18448
PLScramblingIndex: 0
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4

Show all properties

Create the bit vector of information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0611 1]"; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2xWaveGen.MinNumPackets*numFrames;

txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];

data = txPkts(:);

4-49

4 System Objects

Generate a DVB-S2X time-domain waveform using the information bits, data.

txWaveform = s2xWaveGen(data);

Generate DVB-S2X Waveform Consisting of VL-SNR Frame

Generate a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) time-domain
waveform for a single-input generic stream (GS) with multiple physical layer (PL) frames per stream.

The DVB-S2X waveform generated in this example consists of a very low signal to noise ratio (VL-
SNR) frame of set 2.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
if ~exist('s2xLDPCParityMatrices.zip', 'file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 2;

Create a DVB-S2X System object and specify its properties.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.StreamFormat = "GS";
s2xWaveGen.PLSDecimalCode = 131; % VL-SNR set 2
s2xWaveGen.CanonicalMODCODName = "BPSK 1/3";
s2xWaveGen.DFL = 5080;

s2xWaveGen.SamplesPerSymbol = 6;

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "GS"
HasTimeSlicing: false
NumInputStreams: 1
UPL: ©
PLSDecimalCode: 131
CanonicalMODCODName: "BPSK 1/3"
DFL: 5080
PLScramblingIndex: 0
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 6

Create a bit vector of information bits for each stream.

data = randi([0 1],s2xWaveGen.DFL*numFrames,1, ' 'int8');

4-50

dvbs2xWaveformGenerator

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file'")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();

s2xWaveGen.HasTimeSlicing = true;

s2xWaveGen.NumInputStreams = 2;

s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];

s2xWaveGen.PLScramblingIndex = [0 1];

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "TS"
HasTimeSlicing: true
NumInputStreams: 2
PLSDecimalCode: [135 145]
DFL: [18048 44656]
PLScramblingIndex: [0 1]
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4
ISSYI: false

Show all properties

Get the characteristic information about the DVB-S2X waveform generator.

info(s2xWaveGen)

4-51

4 System Objects

ans = struct with fields:
FECFrame: {'normal' ‘'normal'}
ModulationScheme: {'QPSK' '8PSK'}
LDPCCodelIdentifier: {'9/20' '25/36'}

Create the bit vector of input information bits, data, of concatenated TS user packets for each input

stream.

syncBits = [0 1 0 00 111]"; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1l, s2xWaveGen.NumInputStreams);

for i = 1:s2xWaveGen.NumInputStreams
numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
txRawPkts = randi([0 1], pktLen, numPkts);
txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
data{i} = txPkts(:);

end

Generate a DVB-S2X time-domain waveform using the information bits.
txWaveform = s2xWaveGen(data);
Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40x1 complex

-0.2412 - 0.01431
-0.2619 - 0.08611
-0.2726 - 0.13371
-0.2511 - 0.15971
-0.1851 - 0.16801
-0.0780 - 0.16021
0.0448 - 0.1288i
0.1598 - 0.0751i
0.2482 - 0.0049i
0 0.07021

.3026 +

Generate DVB-S2X Dummy VL-SNR Frame
Generate a DVB-S2X dummy VL-SNR frame for a single-input transport stream.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip', 'file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end

4-52

dvbs2xWaveformGenerator

addpath('s2xLDPCParityMatrices');
end

Create a default DVB-S2X System object.
s2xWaveGen = dvbs2xWaveformGenerator;
Specify the PLS decimal code value to indicate VL-SNR frame, and set the DFL value.

s2xWaveGen.PLSDecimalCode = 129; % VL-SNR set 1
s2xWaveGen.DFL = 14128;

Generate a PL. dummy frame.
data = zeros(0,1);
Generate a DVB-S2X waveform.

txWaveform = s2xWaveGen(data);

Version History
Introduced in R2021a

References

[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

[2] ETSI Standard EN 302 307-2 V1.1.1(2015-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications; Part 2:
DVB-S2 Extensions (DVB-S2X).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

» For all properties that support string and cell array input, code generation is only supported with
cell array input.

* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Objects
dvbs2WaveformGenerator

4-53

4 System Objects

Functions
dvbs2BitRecover

4-54

etsiRicianChannel

etsiRicianChannel

Filter input signal through multipath ETSI frequency-flat Rician fading channel

Description

The etsiRicianChannel System object filters an input signal through a multipath European
Telecommunication Standards Institute (ETSI) frequency-flat Rician fading channel. For more
information on the etsiRicianChannel fading model, see “Channel Model Block Diagram” on page
4-60.

To filter an input signal using a multipath ETSI Rician fading channel:

1 Create the etsiRicianChannel object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

etsiRicianChannel
etsiRicianChannel (Name, Value)

chan
chan

Description

chan = etsiRicianChannel creates a multipath ETSI frequency-flat Rician fading channel System
object. This object filters a real or complex input signal through the multipath channel to obtain the
channel-impaired signal.

chan = etsiRicianChannel(Name,Value) sets properties on page 4-55 using one or more
name-value pairs. Enclose each property name in quotes. For example,
etsiRicianChannel("SampleRate",2) sets the input signal sample rate to 2.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in Hz, specified as a positive scalar.

4-55

4 System Objects

Data Types: double

KFactor — Rician K-factor
3 (default) | nonnegative nonzero scalar

Rician K-factor in dB, specified as a nonnegative nonzero scalar.

KFactor is the ratio of direct signal power to the total multipath power. For details, see “Channel
Model Block Diagram” on page 4-60.

Data Types: double

MaximumDopplerShift — Maximum Doppler shift for channel path
0.001 (default) | nonnegative scalar

Maximum Doppler shift for the channel path, specified as a nonnegative scalar. Units are in hertz.

When you set this property to 0, the channel remains static for the entire input. You can use the
reset object function to generate a new channel realization. The MaximumDopplerShift property
value must be smaller than SampleRate/10.

Data Types: double

NumSinusoids — Number of sinusoids used
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.

Data Types: double

RandomStream — Source of random number stream
"Global stream" (default) | "mt19937ar with seed"

Source of random number stream, specified as one of these options.

* "Global stream" — The current global random number stream is used for normally distributed
random number generation. In this case, the reset object function resets the channel filters only.

* "mtl9937ar with seed" — The mt19937ar algorithm is used for normally distributed random
number generation. In this case, the reset object function resets the channel filters and
reinitializes the random number stream to the value of the seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer.

Dependencies

To enable this property, set the RandomSt ream property to "mt19937ar with seed".
Data Types: double

Visualization — Channel visualization
"Off" (default) | "Impulse response" | "Frequency response" | "Impulse and frequency
responses" | "Doppler spectrum”

4-56

etsiRicianChannel

Channel visualization, specified as "0ff", "Impulse response", "Frequency response",
"Impulse and frequency responses", or "Doppler spectrum".

When you set this property to "Doppler spectrum"”, the values plotted are in dB.
Data Types: char | string

Usage

Syntax

y = chan(x)
[y,pathgains] = chan(x)

Description

y = chan(x) filters input signal x through a multipath ETSI frequency-flat Rician fading channel
and returns the output signal in y.

[y,pathgains] = chan(x) returns the channel path gains of the underlying multipath ETSI
frequency-flat Rician fading process in pathgains.

Input Arguments

x — Input signal

Ng-by-1 vector

Input signal, specified as an Ng-by-1 vector, where Ng is the number of samples.
Data Types: double

Complex Number Support: Yes

Output Arguments

y — Output signal
Ng-by-1 vector

Output signal, returned as an Ng-by-1 vector of complex values with the same data precision as the
input signal x on page 4-0 . Ngis the number of samples.

Data Types: double

Complex Number Support: Yes

pathgains — Path gains
Ng-by-1 vector

Path gains, returned as an Ng-by-1 vector of complex values with the same data precision as the input
signal x on page 4-0 . Ny is the number of samples.

Data Types: double
Complex Number Support: Yes

4-57

4 System Objects

4-58

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to etsiRicianChannel
info Characteristic information about object

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

isLocked Determine if System object is in use

reset Reset internal states of System object

Examples

Transmit Input Signal Through ETSI Rician Channel

Transmit an input signal through a European Telecommunication Standards Institute (ETSI) Rician
channel model.

Define the channel configuration using an etsiRicianChannel System object and specify its
properties.

chan = etsiRicianChannel;
chan.SampleRate = 2.9€6;
chan.KFactor = 4;
chan.MaximumDopplerShift = 30;
chan.NumSinusoids = 45;
disp(chan)
etsiRicianChannel with properties:
SampleRate: 2900000
KFactor: 4
MaximumDopplerShift: 30
Use get to show all properties

Generate a QPSK-modulated input signal to pass through the channel.
txWaveform = pskmod(randi([© 3],chan.SampleRate,1),4);
Filter the signal through the Rician channel.

rxWaveform = chan(txWaveform);

etsiRicianChannel

Verify ETSI Rician Channel Outputs Using Two Random Number Generation Methods

Produce the same multipath European Telecommunication Standards Institute (ETSI) Rician fading
channel response by using two different methods for random number generation. The multipath ETSI
Rician fading channel System object includes two methods for random number generation. You can
use the current global stream or the mt19937ar algorithm with a specified seed. By interacting with
the global stream, the System object can produce the same outputs from the two methods.

Create etsiRicianChannel System object, and then specify its properties. Set the random number
generation method as the mt19937ar algorithm.

chan = etsiRicianChannel;

chan.SampleRate = 150000;

chan.KFactor = 2;

chan.MaximumDopplerShift = 10;

chan.RandomStream = "mt19937ar with seed";
chan.Seed = 80;

Modulate randomly generated data.

txWaveform = pskmod(randi([0 3],512,1),4);

Filter the modulated data by using the multipath Rician fading channel System object.
[ChanOutl,PathGainsl] = chan(txWaveform);

Set the System object to use the global stream for random number generation.

release(chan);
chan.RandomStream = "Global stream";

Set the global stream to have the same seed that was specified when creating the multipath Rician
fading channel System object.

rng(80)
Filter the modulated data by using the multipath Rician fading channel System object again.
[ChanOut2,PathGains2] = chan(txWaveform);

Verify that the channel and path gain outputs are the same for each of the two random number
generation methods.

isequal (ChanQutl,ChanOut2)
ans = logical
1
isequal (PathGainsl,PathGains2)

ans = logical
1

4-59

4 System Objects

4-60

Plot Doppler Spectrum for ETSI Rician Fading Channel

Create a multipath European Telecommunication Standards Institute (ETSI) Rician fading channel
and display its Doppler spectrum.

Create etsiRicianChannel System object, and then specify its properties.

chan = etsiRicianChannel;

chan.SampleRate = 3.6e€6;

chan.KFactor = 10;

chan.MaximumDopplerShift = 50;

chan.Visualization = "Doppler Spectrum"; % Jake's Doppler spectrum

Generate random binary data for n consecutive frames and pass the data through the multipath
Rician fading channel.

%sn = 50;

%sfor i = 1:n

% X = randi([0 1],3.6e6,1);

% Yy = chan(x); % Spectrum visualization is updated only when the buffer is filled
% % Required samples to fill the buffer is mentioned in the scope
%send

More About

Channel Model Block Diagram

The channel model block diagram provides an overview of the etsiRicianChannel System object,
as specified in ETSI TS 101 376-5-5 V1.3.1 (2005-02) [1].

* The complex input signal is multiplied by a fixed gain and then by a complex Rayleigh fading gain.
These actions form the multipath portion of the signal path. K is the Rician fade factor in dB.

* The multipath portion is then added to the direct signal component to form the Rician fading
signal. This action forms the line-of-sight (LOS) component of the signal path.

The coherent summation of many multipath components yield a classical Doppler spectrum for
Rayleigh fading process, which when added to the direct path signal, forms the Rician fading
signal.

* Noise samples can be subsequently added to the sum of the LOS component and multipath
components.

etsiRicianChannel

LOS Component

Complex Input Signal Corﬁplex Output Signal

Multipath
Component

—X)

Jake's Rayleigh
104 (-K720) Flat Fade
Generator

The Rician spectrum for linear Rician factor K;is given by the following equation:

S(f) = L

= +6(f)
Koot~ (5

where:

* K;is the Rician K-factor, “KFactor” on page 4-0

* fyis the maximum Doppler shift for all multipath signals.
* fisintherange —f; < f< +f;.

6(f) is the contribution due to the LOS component.

Note The power of the complex output faded signal is (1+1/K}).

Version History
Introduced in R2021a

References

[11ETSITS 101 376-5-5 V1.3.1 (2005-02). GEO-Mobile Radio Interface Specifications (Release 1);
Part 5: Radio interface physical layer specifications; Sub-part 5: Radio Transmission and
Reception; GMR-1 05.005.

4-61

4 System Objects

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Code generation is available only when the Visualization property is "Off".
* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Objects

comm.RicianChannel | comm.RayleighChannel | comm.AWGNChannel |

comm.RayTracingChannel

Functions
doppler

4-62

gpsPCode

gpsPCode

Generate P-code for GPS satellites

Description

The gpsPCode System object generates a precision code (P-code) for a Global Positioning System
(GPS) satellite, as defined in IS-GPS-200L Section 3.3.2.2 [1].

To generate a P-code for a GPS satellite:

1 Create the gpsPCode object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

pgenerator = gpsPCode

pgenerator = gpsPCode(Name,Value)

Description

pgenerator = gpsPCode creates a default P-code generator System object.

pgenerator = gpsPCode(Name,Value) sets “Properties” on page 4-63 using one or more name-

value pairs. For example, 'PRNID', 10 specifies a pseudo-random noise (PRN) ID of 10.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PRNID — GPS satellite PRN index
1 (default) | integer in the range [1, 210] | vector of integer elements in the range [1, 210]

GPS satellite PRN index, specified as one of these options.

» Integerin the range [1, 210] — Use this option to input a PRN index for a single satellite.

* Vector of integer elements in the range [1, 210] — Use this option to input PRN indices for
multiple satellites.

4-63

4 System Objects

4-64

For details on PRN ID values, see IS-GPS-200L Tables 3-Ia, 3-Ib, and 6-1 [1].
Data Types: double | uint8

OutputCodeLength — Output code length
10230 (default) | positive integer

Output code length, specified as a positive integer. This length specifies the number of rows in the
output P-code.

The default value of 10230 corresponds to 1 millisecond of P-code, as the P-code chips are at 10.23
MHz.

Tunable: Yes

Data Types: double | uint64

InitialStateFormat — Format of the initial state

"seconds" (default) | "datetime" | "chips"

Format of the initial state, specified as "seconds", "datetime", or "chips".

Data Types: char | string

InitialTime — Initial time within one week
0 (default) | integer in the range [0, 604,800] | datetime object

Initial time within one week, specified as one of these options.

* Integer in the range [0, 604,800] — Use this option when you set the InitialStateFormat
property to "seconds". In this case, initial time specifies the seconds that have elapsed from the
beginning of the week.

* datetime object — Use this option when you set the InitialStateFormat property to
"datetime". In this case, initial time specifies the time elapsed from the beginning of the week to
the time specified by datetime object.

Note The P-code is one week long.

The default value of 0 assumes that you set the InitialStateFormat property to "seconds".

Dependencies

To enable this property, set the InitialStateFormat property to "seconds" or "datetime".

Data Types: double

InitialNumChipsElapsed — Initial number of elapsed P-code chips
0 (default) | integer in the range [0, 604,800x10.23e6]

Initial number of elapsed P-code chips, from the beginning of the week, specified as an integer in the
range [0, 604,800x10.23e6].

The maximum input value, 604,800x10.23e6, is the total number of chips elapsed in one week
(7%x24x60x60%10.23€6).

gpsPCode

Note 10.23e6 is the number of chips elapsed in one second.

Dependencies

To enable this property, set the InitialStateFormat property to "chips".
Data Types: double | uint64

Usage

Syntax

code = pgenerator()
Description

code = pgenerator()
Output Arguments

code — Generated binary-valued P-code
vector | matrix

Generated binary-valued P-code, specified as one of these options.

* Vector — The System object returns this option when you specify the PRNID property as a scalar.

* Matrix — The System object returns this option when you specify the PRNID property as a vector.
Each column of this matrix represents the generated P-code corresponding to the element in the
PRNID vector.

The number of rows is equal to the value of the OutputCodeLength property. The number of columns
is equal to the length of the PRNID property. Each element of the vector or matrix is of data type
int8.

Data Types: int8
Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to gpsPCode

info Characteristic information about object

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

4-65

4 System Objects

4-66

isLocked Determine if System object is in use
reset Reset internal states of System object

Examples
Generate P-code When Initial Format Is Seconds

Create a precision code generator (P-code) System object™, and then set its properties.

pgen = gpsPCode;

pgen.PRNID = [10 50]; % 2 satellites
pgen.OutputCodeLength = 1024;

pgen.InitialTime = 1800; % Seconds (default)
disp(pgen)

gpsPCode with properties:

PRNID: [10 50]
OutputCodeLength: 1024
InitialStateFormat: "seconds"
InitialTime: 1800

Generate the P-code.

code = pgen();

Generate P-code When Initial Format Is Chips

Create the P-code System object™ and set its properties.

pgen = gpsPCode;
pgen.PRNID = 45;
pgen.QutputCodeLength = 102400;

Set the initial state format as chips. Generate the P-code for the last 5,000 chips in one week.

pgen.InitialStateFormat = "chips";

% 604,800 is the total seconds in one week

% 10.23e6 is the number of P-code chips that elapsed in one second
pgen.InitialNumChipsElapsed = 604800*10.23e6 - 5000;

code = pgen();

Generate P-code When Initial Format Is datetime Object

Create a P-code System object™ and specify the PRN index and the output code length.

Set the format of the initial state as a datetime object. Generate the P-code for the current time.
pgen = gpsPCode;

pgen.PRNID = 25;
pgen.OutputCodeLength = 20460;

gpsPCode

pgen.InitialStateFormat = "datetime";
pgen.InitialTime = datetime("now");
code = pgen();

Display the properties of the P-code generator.
disp(pgen)
gpsPCode with properties:

PRNID: 25
OutputCodelLength: 20460
InitialStateFormat: "datetime"
InitialTime: 31-Aug-2022 09:17:29

Get P-Code State Information

Get information from a gpsPCode System object™ by using the info object function. Observe how
the precision of initial time impacts the generation of the P-code.

Create a P-code generator System object™, and then specify its properties.

format long
pgen = gpsPCode

pgen =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230
InitialStateFormat: "seconds"
InitialTime: O

pgen.InitialStateFormat = "chips";
pgen.InitialNumChipsElapsed = 8388600;

Get the characteristic information about the P-code generator.
pgen.info

ans = struct with fields:
TotalNumChipsElapsed: 8388600
TotalSecondsElapsed: 0.820000000000000

Advance the time by a quarter of a P-code chip time (that is, 0.25/10.23e6).

pgenl = gpsPCode;
pgenl.InitialTime = pgen.info.TotalSecondsElapsed + 0.25/10.23e6

pgenl =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230

4-67

4 System Objects

InitialStateFormat: "seconds"
InitialTime: 0.820000024437928

pgenl.info

ans = struct with fields:
TotalNumChipsElapsed: 8388600
TotalSecondsElapsed: 0.820000000000000

The info function output shows no increment in the TotalNumChipsElapsed in this case, because
TotalNumChipsElapsed is calculated internally using the function round.

Advance the time by half of a P-code chip time now (that is, 0.5/10.23€6).

pgen2 = gpsPCode;
pgen2.InitialTime = pgen.info.TotalSecondsElapsed + 0.5/10.23e6

pgen2 =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230
InitialStateFormat: "seconds"
InitialTime: 0.820000048875855

pgen2.info

ans = struct with fields:
TotalNumChipsElapsed: 8388601
TotalSecondsElapsed: 0.820000097751711

The info function output now shows the TotalNumChipsElapsed is incremented by one, due to the
internal usage of round () function.

Compare the output of each System object call.

code = pgen();

codel = pgenl();
code2 = pgen2();
isequal(code, codel) % code and codel are equal

ans = logical
1

isequal(codel,code2) % codel and code2 are unequal

ans = logical
0

Version History
Introduced in R2021b

4-68

gpsPCode

References

[1] IS-GPS-200L. "NAVSTAR GPS Space Segment/Navigation User Segment Interfaces." GPS
Enterprise Space & Missile Systems Center (SMC) - LAAFB, May 14, 2020.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
gnssCACode

Objects
comm.GoldSequence | comm.PNSequence

Topics
“GPS Waveform Generation”

4-69

4 System Objects

4-70

lutzLMSChannel

Filter input signal through Lutz LMS frequency-flat fading channel

Description

The LutzLMSChannel System object filters a real or complex input signal through a Lutz land
mobile-satellite (LMS) frequency-flat fading communication channel, as defined in [1].

To filter an input signal through a Lutz LMS time-varying channel:

1 Create the LutzLMSChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

lutzLMSChannel
lutzLMSChannel (Name=Value)

chan
chan

Description

chan = lutzLMSChannel creates a Lutz LMS frequency-flat fading channel System object. Use this
channel to simulate an LMS time-varying channel for a single geostationary satellite operating in the
L-band.

The default System object parameters are set to a scenario in which the mobile is moving at a
constant speed of 3 km/hr on a highway with a conical spiral antenna operating at a 1.54 GHz carrier
frequency and a satellite elevation angle of 34 degrees, as specified in [1].

chan = lutzLMSChannel (Name=Value) sets properties on page 4-70 using one or more name-
value arguments. For example, SampleRate=20e3 sets the input signal sample rate to 20e3.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
7 .68e6 (default) | positive scalar

lutzLMSChannel

Input signal sample rate in Hz, specified as a positive scalar.

Data Types: double

InitialState — Initial state of channel
"Good" (default) | "Bad"

Initial state of the channel, specified as "Good" or "Bad".

Tunable: Yes

Data Types: char | string

KFactor — K-factor of Rician fading channel
11.7 (default) | real scalar

K-factor of the Rician fading channel in dB, specified as a real scalar. This property applies only when
the channel state is good.

Tunable: Yes

Data Types: double

LogNormalFading — Fading parameters of Rayleigh log-normal fading channel
[-8.8 3.8] (default) | two-element vector

Fading parameters of the Rayleigh log-normal fading channel in dB, specified as a two-element
vector. The first element corresponds to the mean power level due to shadowing. Nominally, the mean
power level due to shadowing is a negative value. The second element corresponds to the standard
deviation of power level due to shadowing.

This property applies only when the channel state is bad.

Tunable: Yes

Data Types: double

StateDurationDistribution — Distribution type used for state duration
"Exponential” (default) | "None"

Distribution type used for state duration, specified as one of these values.

* "Exponential" — The duration of each state follows an exponential distribution. The
MeanStateDuration property specifies the mean duration of each state.

* "None" — The MeanStateDuration property directly specifies the duration of each state.

Tunable: Yes

Data Types: char | string

MeanStateDuration — Mean duration of each state
[1800 14.4] (default) | two-element vector

Mean duration of each state in seconds, specified as a two-element vector. The first element
corresponds to the mean duration of the good state, and the second element corresponds to the mean
duration of the bad state. Both the elements must be nonzero values.

Tunable: Yes

4-71

4 System Objects

4-72

Data Types: double

MaximumDopplerShift — Maximum Doppler shift due to mobile movement
4.2807 (default) | nonnegative scalar

Maximum Doppler shift due to mobile movement in Hz, specified as a nonnegative scalar.

When this property value is 0, the channel is static. The default value of 4.2807 Hz corresponds to a
mobile speed of 3 km/hr at a carrier frequency of 1.54 GHz.

Data Types: double

ChannelFiltering — Channel filtering
true or 1 (default) | false or 0

Channel filtering, specified as one of these logical values.

* 1 (true) — The object accepts an input signal and produces a filtered output signal, in addition to
the channel path gains, sample times, and state series.

* 0 (false) — The object does not accept an input signal, produces no filtered output signal, and
outputs only channel path gains, sample times, and state series. You must specify the duration of
the fading process by using the NumSamples property, and the sampling rate by using the
SampleRate property.

Data Types: logical

NumSamples — Number of time samples
7680 (default) | nonnegative integer

Number of time samples used to set the duration of the fading process realization, specified as a
nonnegative integer.

Tunable: Yes
Dependencies

To enable this property, set ChannelFiltering property to false.
Data Types: double

OutputDataType — Data type of step method outputs
"double" (default) | "single"

Data type of step method outputs, specified as one of these values.

* "double"
*+ "single"

Dependencies

To enable this property, set ChannelFiltering property to false.
Data Types: char | string

FadingTechnique — Channel model fading technique
"Filtered Gaussian noise" (default) | "Sum of sinusoids"

lutzLMSChannel

Channel model fading technique, specified as "Filtered Gaussian noise" or "Sum of
sinusoids".

Data Types: char | string

NumSinusoids — Number of sinusoids used

48 (default) | positive integer

Number of sinusoids used to generate the Doppler fading samples, specified as a positive integer.

Dependencies

To enable this property, set the FadingTechnique property to "Sum of sinusoids".
Data Types: double | uint16

RandomStream — Source of random number stream
"Global stream" (default) | "mt19937ar with seed"

Source of the random number stream, specified as "Global stream" or "mt19937ar with
seed".

* When you specify "Global stream", the object uses the current global random number stream
for uniformly and normally distributed random number generation. In this case, the reset object
function resets only the filters.

* When you specify "mt19937ar with seed", the object uses the mt19937ar algorithm for
uniformly and normally distributed random number generation. In this case, the reset object
function resets the filters and reinitializes the random number stream to the value of the Seed
property.

Data Types: char | string

Seed — Initial seed
73 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer. When you call the reset object function, it reinitializes the mt19937ar random number
stream to the Seed value.

Dependencies

To enable this property, set the RandomStream property to "mt19937ar with seed".
Data Types: double | uint32
Visualization — Channel visualization

"Off" (default) | "Impulse response" | "Frequency response” | "Impulse and frequency
responses" | "Doppler spectrum"

Channel visualization, specified as one of these options.

o "Off"

*+ "Impulse response"

* "Frequency response"

+ "Impulse and frequency responses"

4-73

4 System Objects

4-74

* "Doppler spectrum"

When you set this property to enable the visualization, selected channel characteristics are animated
in separate figures, with each System object call.

For more information, see the “Channel Visualization” on page 4-81 section.

Data Types: char | string

TimeShare — Time share of channel in good and bad states
[0.9921 0.0079] (default) | two-element vector

This property is read-only.

Time share of the channel in good and bad states, returned as a two-element vector. The first element
is the ratio of the good state mean duration to the sum of good and bad state mean durations. The
second element is the ratio of the bad state mean duration to the sum of good and bad state mean
durations.

Data Types: double
Usage

Syntax

[pathgains,sampletimes,stateseries] = chan()
[y,pathgains,sampletimes,stateseries] = chan(x)

Description

[pathgains,sampletimes,stateseries] = chan() produces path gains, pathgains, sample
times, sampletimes, and state series, stateseries for a Lutz LMS frequency-flat fading channel.

In this case, the System object acts as a source of path gains, sample times, and state series.

Specify the duration of the fading process by using the NumSamples property. Specify the data type
of pathgains and sampletimes using the OutputDataType property.

Note This syntax is applicable when you set the ChannelFiltering property to false.

[y,pathgains,sampletimes,stateseries] = chan(x) filters the input signal, x, through a
Lutz LMS frequency-flat fading channel, and returns the output channel-impaired signal in y, in
addition to the outputs in the previous syntax.

Note This syntax is applicable when you set the ChannelFiltering property to true.

Input Arguments

x — Input signal
Ng-by-1 vector

Input signal, specified as an Ng-by-1 vector, where Ng is the number of input samples.

lutzLMSChannel

Data Types: single | double
Complex Number Support: Yes

Output Arguments

y — Output signal
Ng-by-1 vector

Output signal, returned as an Ng-by-1 vector of complex values with the same data precision and
length as the input signal x. Ng is the number of input samples.

Data Types: single | double

Complex Number Support: Yes

pathgains — Channel path gains of fading process
Ng-by-1 vector

Channel path gains of fading process, returned as an Ng-by-1 vector of complex values.

* When you set the ChannelFiltering property to true, pathgains is of the same data precision as
the input signal x, and Ny is the number of input samples.

* When you set the ChannelFiltering property to false, pathgains is of the same data precision
as the OutputDataType property and N is equal to the NumSamples property.

Data Types: single | double
Complex Number Support: Yes

sampletimes — Sample times of channel snapshots
Ng-by-1 vector

Sample times of channel snapshots, returned as an Ng-by-1 vector.

* When you set the ChannelFiltering property to true, sampletimes is of the same data precision
as the input signal X, and Ny is the number of input samples.

* When you set the ChannelFiltering property to false, sampletimes is of the same data precision
as the OutputDataType property and N is equal to the NumSamples property.

Data Types: single | double

stateseries — State series of channel
Ng-by-1 vector

State series of the channel, returned as an Ng-by-1 vector. Each value of this vector describes the
state in which channel is present for that channel snapshot. A value of 0 represents bad state. A value
of 1 represents good state. A value between 0 and 1 represents a state transition.

* When you set the ChannelFiltering property to true, Ng is the number of input samples.
* When you set the ChannelFiltering property to false, Ny is equal to the NumSamples property.

stateseries is of the data type logical.

Data Types: logical

4-75

4 System Objects

4-76

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to LutzLMSChannel

info Characteristic information about object

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

isLocked Determine if System object is in use

reset Reset internal states of System object

Examples

Create and Configure Lutz LMS Channel

Define the channel configuration using a LutzLMSChannel System object and set the properties to
these values.

* Symbol rate: 4800 symbols/sec (Assume sample rate to be equal to symbol rate)

* Product of the maximum Doppler frequency and symbol duration that indicates a normalized
measure of channel state time variations (fd*T): 0.01

* Rice factor (K-factor): 20 dB

+ Fading parameters of Rayleigh log-normal fading channel in bad state: mean (mu): -20.8 dB and
standard deviation (sigma): -0.09 dB

* Fading signal (Doppler Spectrum): Jakes model with sum of sinusoids technique (10 sinusoids)
* Good state time-share parameter (X): 0.9
* Mean duration of shadowing period (Ct): 10 sec

chan = lutzLMSChannel;

chan.SampleRate = 4800;
chan.MaximumDopplerShift = 48;
chan.KFactor = 20;

chan.LogNormalFading = [-20.8 -0.09];
chan.MeanStateDuration = [9 1];
chan.FadingTechnique = "Sum of sinusoids";
chan.NumSinusoids = 10;

Assuming same as symbol rate
fd = 0.01/T = 0.01*SymbolRate
Rice factor

[mu sigmal

[X*Ct (1-X)*Ct];

0® o° o o° o°

Display the channel characteristics.
disp(chan)

lutzLMSChannel with properties:

lutzLMSChanne

SampleRate: 4800
InitialState: "Good"
KFactor: 20
LogNormalFading: [-20.8000 -0.0900]
StateDurationDistribution: "Exponential"

MeanStateDuration: [9 1]
MaximumDopplerShift: 48

ChannelFiltering: true

Use get to show all properties

Model Lutz LMS Channel Using Lutz IEEE Paper Configuration

Model the Lutz LMS channel using the configuration entries from the Lutz IEEE paper (Table II), as
defined in the IEEE Transactions on Vehicular Technology article (stated in the References section).

Define the channel configuration using a LutzLMSChannel System object and set the properties to
these values.

* Rician K-factor (k): 10.2

* Fading parameters of Rayleigh log-normal fading channel in bad state: mean (mu): -8.9 dB and
standard deviation (sig): 5.1 dB

* Mean duration of good state, in meters (Dg): 90
* Mean duration of bad state, in meters (Db): 29
* Assume mobile speed is 10 km/hr at 1.54 GHz carrier frequency

= 10;
ms = (v*1000/3600);

v Mobile speed in km/hr
%

fc = 1.54e9;

C

f

Mobile speed in m/s

Carrier frequency in Hz

Speed of light in m/s

Mobile maximum Doppler frequency in Hz

= physconst("lightspeed");
d = v _ms/c*fc;

o® o° o° o° o°

k = 10.2; % Rician K-factor in dB
mu = -8.9; % Bad state mean
sig = 5.1; % Bad state standard deviation

% Get the mean state duration in seconds

Dg = 90; % Mean duration of good state in m
Db = 29; % Mean duration of bad state in m
Dg sec = Dg/v_ms; % Mean duration of good state in sec
Db sec = Db/v_ms; % Mean duration of bad state in sec

chan = lutzLMSChannel;
chan.MaximumDopplerShift = fd;
chan.KFactor = k;

chan.LogNormalFading = [mu sig];
chan.MeanStateDuration = [Dg sec Db sec];

Display the channel characteristics.
disp(chan)

lutzLMSChannel with properties:

4-77

https://ieeexplore.ieee.org/document/289418

4 System Objects

SampleRate: 7680000
InitialState: "Good"

KFactor: 10.2000

LogNormalFading: [-8.9000 5.1000]
StateDurationDistribution: "Exponential"

MeanStateDuration: [32.4000 10.4400]

MaximumDopplerShift: 14.2691

ChannelFiltering: true

Use get to show all properties

Plot Space Series and State Series for Lutz LMS Channel
Create and Configure the Channel
Create a Lutz LMS channel using LutzLMSChannel System object.

Consider a scenario in which a mobile is moving with variable velocity and a maximum Doppler shift
(fd) of 25 Hz. This is the behavior of the mobile during the scenario:

» First 5 minutes: Good state with a Rice factor of 20 dB

* Next 1 minutes: Good state with a Rice factor of 8 dB

* Next 2 minutes: Bad state with the mean of fading level (mu) at -8 dB and standard deviation of
fading level (sigma) at 2 dB

fd = 25; % In Hz
TimeDurInMins = [5 1 2]; % In minutes
TimeDurInSec = TimeDurInMins*60; % In seconds
riceFactor = [20 8 nan]; % In dB
mu = [nan nan -8]; % In dB
sigma = [nan nan 2]; % In dB
sampleRate = 1000; % In Hz

state = ["Good" "Good" "Bad"];
Create the System object and configure its properties to these values.

* Distribution type used for state duration: None
Random stream: mt19937ar with seed
Channel filtering: 0 (Disabled)

% Initialize the channel

chan = lutzLMSChannel;

chan.InitialState = "Good";
chan.StateDurationDistribution = "None";
chan.RandomStream = "mt19937ar with seed";
chan.ChannelFiltering = 0;

chan.SampleRate = sampleRate;
chan.MaximumDopplerShift = fd;

Display the channel characteristics.
disp(chan)

lutzLMSChannel with properties:

4-78

lutzLMSChanne

SampleRate: 1000
InitialState: "Good"
KFactor: 11.7000
LogNormalFading: [-8.8000 3.8000]
StateDurationDistribution: "None"
MeanStateDuration: [1800 14.4000]
MaximumDopplerShift: 25
ChannelFiltering: false
NumSamples: 7680
OutputDataType: "double"

Use get to show all properties
Generate Lutz LMS Channel

Simulate the channel for all three cases of the scenario.

numChanges = length(TimeDurInSec);
pathGainsT = cell(numChanges,1);

cell(numChanges,1);
cell(numChanges,1);

stateSeriesT
sampleTimesT

% Run the channel across different cases
for loopIdx = 1:length(TimeDurInSec)
chan.InitialState = state(loopIdx);
if strcmpi(chan.InitialState, "Good")
chan.MeanStateDuration = [TimeDurInSec(loopIdx) 0];
chan.KFactor = riceFactor(loopIdx);
else
chan.MeanStateDuration = [0 TimeDurInSec(loopIdx)];
chan.LogNormalFading = [mu(loopIdx) sigma(loopIdx)];
end
chan.NumSamples = round(sum(chan.MeanStateDuration)*chan.SampleRate);

[pathGainsT{loopIdx},sampleTimesT{loopIdx},stateSeriesT{loopIdx}] = chan();

end

% Convert cell to matrix

pathGains = cell2mat(pathGainsT);
sampleTimes cell2mat(sampleTimesT);
stateSeries cell2mat(stateSeriesT);

Visualize Space Series and State Series

Plot the space series as a function of time.

figure

subplot(211)
plot(sampleTimes,20*1logl0(abs(pathGains)))
title("Space Series")

xlabel("Time (in s)")

ylabel("Path Gain (in dB)")

grid on

Plot the state series as a function of time.

subplot(212)
plot(sampleTimes,stateSeries)
title("State Series")
xlabel("Time (in s)")

4-79

4 System Objects

ylabel("State")
grid on

Space Series

0 50 100 150

200 250 300
Time (in s)

State Series

350

400 450

500

0 50 100 180

200 250 300
Time {in s)

350

400 450

500

Get Lutz LMS Channel Information
Get channel information from a LutzLMSChannel System object by using the info object function.

Create a Lutz LMS channel System object and specify its properties.

chan = lutzLMSChannel;
chan.SampleRate = 6000;
chan.KFactor = 20;
chan.MeanStateDuration =
disp(chan)

[8 2];

lutzLMSChannel with properties:

SampleRate:

InitialState:

KFactor:

LogNormalFading:
StateDurationDistribution:
MeanStateDuration:
MaximumDopplerShift:
ChannelFiltering:

4-80

6000

"Good"

20

[-8.8000 3.8000]
"Exponential"

[8 2]

4.2807

true

lutzLMSChanne

Show all properties

QPSK-modulate a random input signal, and then pass it through the channel.

numSamples 2e4;
txWaveform pskmod(randi([0 3],numSamples,l),4);
[rxWaveform, pathGains, sampleTimes,stateSeries] = chan(txWaveform);

Get the characteristic information about the Lutz LMS channel.
info(chan)

ans = struct with fields:
PathDelays: 0
ChannelFilterDelay: 0
ChannelFilterCoefficients: 1
2

NumSamplesProcessed: 20000

Transmit another QPSK-modulated random input signal through the channel

numSamples2 = 3e4;
txWaveform2 pskmod(randi([0 3],numSamples2,1),4);
[rxWaveform2,pathGains2,sampleTimes2,stateSeries2] = chan(txWaveform2);

Observe the change in number of samples processed.
info(chan)

ans = struct with fields:
PathDelays:
ChannelFilterDelay:
ChannelFilterCoefficients:
NumSamplesProcessed:

SN SN oNo)

0000

More About

Channel Visualization

The LutzLMSChannel System object enables visualization of the channel impulse response,
frequency response, and Doppler spectrum.

* Doppler Spectrum

The Doppler spectrum plot displays the empirically determined spectrum from the path gains of
the channel. The Doppler spectrum values are in dB.

When there is no mobile movement, the channel is static channel. The empirical data is displayed
as a line for nonstatic channels and as a point for static channels. Before the empirical plot is
updated, the internal buffer must be completely filled with the required number of channel
samples. The empirical plot is the running mean of the spectrum that is calculated from each full
buffer. For nonstatic channels, the number of input samples that is needed before the next update
is displayed in the status bar located at the bottom of plot. The number of samples that is needed
is a function of the sample rate and the maximum Doppler shift depending on mobile movement.
For static channels, the text "Reset fading channel for next update" is displayed.

4-81

lutzLMSChannel

Static Channel

» For channel impulse and frequency visualizations, see “Channel Visualization”.

Version History
Introduced in R2022b

References

[1] Lutz, E., D. Cygan, M. Dippold, F. Dolainsky, and W. Papke. “The Land Mobile Satellite
Communication Channel-Recording, Statistics, and Channel Model.” IEEE Transactions on
Vehicular Technology 40, no. 2 (May 1991): 375-86. https://doi.org/10.1109/25.289418.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Code generation is available only when the Visualization property is "Off".
* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4-83

https://doi.org/10.1109/25.289418

4 System Objects

See Also
p681LMSChannel | etsiRicianChannel | comm.RayleighChannel

Topics
“Simulate and Visualize Land Mobile-Satellite Channel”

4-84

p681LMSChannel

p681LMSChannel

Filter input signal through ITU-R P.681-11 LMS frequency-flat fading channel

Description

The p681LMSChannel System object filters a real or complex input signal through a frequency-flat
fading land mobile-satellite (LMS) communication channel, as defined in the ITU-R Recommendation
P.681-11 Section 6.2 [1].

To filter an input signal through a P.681-11 LMS time-varying channel:

1 Create the p681LMSChannel object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

chan
chan

p681LMSChannel
p681LMSChannel (Name=Value)

Description

chan = p681LMSChannel creates an ITU-R P.681-11 LMS frequency-flat fading channel System
object.

The default System object has the environment set to an urban scenario, with carrier frequency of 2.2
GHz and an elevation angle of 45 degrees. This object models a single geostationary satellite.

chan = p681LMSChannel (Name=Value) sets properties on page 4-85 using one or more name-
value arguments. For example, SampleRate=20e3 sets the input signal sample rate to 20e3.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
7.68e6 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar.

4-85

4 System Objects

4-86

Data Types: double

InitialState — Initial state of channel
"Good" (default) | "Bad"

Initial state of the channel, specified as "Good" or "Bad".

Data Types: char | string

CarrierFrequency — Carrier frequency
2.2e9 (default) | nonnegative scalar

Carrier frequency in hertz, specified as a nonnegative scalar.

Data Types: double

ElevationAngle — Path elevation angle to geostationary satellite
45 (default) | scalar

Path elevation angle to a geostationary satellite in degrees, specified as a scalar. The nominal value is
in the range [0, 90].

Data Types: double

MobileSpeed — Speed of mobile terminal
0.8333 (default) | nonnegative scalar

Speed of mobile terminal in m/s, specified as a nonnegative scalar. The default value of 0.8333 m/s
translates to 3 km/h.

This property affects the Doppler spread applied to the multipath component and also the Doppler
shift applied to the direct path component.

Setting this property to 0, results in a static channel. In this case, the Doppler spread is not
applicable for the multipath component and the Doppler shift is also not applied in direct path
component of the channel.

Data Types: double

AzimuthOrientation — Azimuth orientation
0 (default) | scalar

Azimuth orientation in degrees, specified as a scalar. This value specifies the direction of movement
of the ground or mobile terminal. The nominal value is in the range [0, 360].

When you set this property to odd multiples of 90, the Doppler shift caused by the mobile movement
in the direct path component is nonexistent.

Data Types: double

Environment — Type of propagation environment
"Urban" (default) | "Suburban" | "RuralWooded" | "Village" | "Residential" | "Highway" |
"Rural" | "Train" | "Custom"

Type of propagation environment, specified as one of these values.

e« "Urban"

p681LMSChannel

* "Suburban"

* "RuralWooded"
+ "Village"

*+ "Residential"

* "Highway" — Applicable only when you set the value of CarrierFrequency property in the range
[10, 20] GHz

* "Rural" — Applicable only when you set the value of CarrierFrequency property in the range [10,
20] GHz

* "Train" — Applicable only when you set the value of CarrierFrequency property in the range [10,
20] GHz

e "Custom"

When you set this property to "Custom", configure the propagation environment using these
properties.

* StateDistribution

* MinStateDuration

* DirectPathDistribution

* MultipathPowerCoefficients

» StandardDeviationCoefficients
* DirectPathCorrelationDistance
* TransitionLengthCoefficients

» StateProbabilityRange

Data Types: char | string

StateDistribution — Parameters of state duration distribution
[3.0639 2.9108; 1.6980 1.2602] (default) | 2-by-2 matrix

Parameters of state duration distribution in dB, specified as a 2-by-2 matrix. For example, if you
specify the input as [muG, muB; sigmaG, sigmaB], then:

* muG and sigmaG represent the mean and standard deviation of good state duration, respectively.
* muB and sigmaB represent the mean and standard deviation of bad state duration, respectively.

Dependencies

To enable this property, set the Environment property to "Custom".

Data Types: double

MinStateDuration — Minimum duration of each state
[10 6] (default) | two-element row vector

Minimum duration of each state in meters, specified as a two-element row vector. The first element
corresponds to good state and the second element corresponds to bad state.

Dependencies

To enable this property, set the Environment property to "Custom".

4-87

4 System Objects

4-88

Data Types: double

DirectPathDistribution — Parameters of direct path amplitude distribution
[-1.8225 -15.4844; 1.1317 3.3245] (default) | 2-by-2 matrix

Parameters of direct path amplitude distribution in dB, specified as a 2-by-2 matrix. For example, if
you specify the input as [muMaG, muMaB; sigmaMaG, sigmaMaB], then:

* muMaG and sigmaMaG represent the mean of the direct path amplitude (Ma) and the standard
deviation of Ma in good state, respectively.

* muMaB and sigmaMaB represent the mean and standard deviation of Ma in bad state,
respectively.

Dependencies

To enable this property, set the Environment property to "Custom".

Data Types: double

MultipathPowerCoefficients — Coefficients to compute multipath power
[-0.0481 0.9434; -14.7450 -1.7555] (default) | 2-by-2 matrix

Coefficients to compute the multipath power, specified as a 2-by-2 matrix. For example, if you specify
the input as [h1G, h1B; h2G, h2B], then:

* hlG and h2G represent the coefficients in good state.
* hlB and h2B represent the coefficients in bad state.

Dependencies

To enable this property, set the Environment property to "Custom".

Data Types: double

StandardDeviationCoefficients — Coefficients to compute standard deviation of direct
path amplitude
[-0.4643 -0.0798; 0.3334 2.8101] (default) | 2-by-2 matrix

Coefficients to compute standard deviation of direct path amplitude in all states, specified as a 2-by-2
matrix. For example, if you specify the input as [g1G, g1B; g2G, g2B], then:

* ¢1G and g2G represent the coefficients in good state.
* gl1B and gZB represent the coefficients in bad state.

Dependencies

To enable this property, set the Environment property to "Custom".

Data Types: double

DirectPathCorrelationDistance — Direct path amplitude correlation distance
[1.7910 1.7910] (default) | two-element row vector

Direct path amplitude correlation distance (Lcorr) in meters, specified as a two-element row vector.
The first element corresponds to good state and the second element corresponds to bad state.

p681LMSChannel

Dependencies

To enable this property, set the Environment property to "Custom".

Data Types: double

TransitionLengthCoefficients — Coefficients to compute transition length
[0.0744; 2.1423] (default) | two-element column vector

Coefficients to compute the transition length (f1,f2), specified as a two-element column vector.
Dependencies

To enable this property, set the Environment property to "Custom".

Data Types: double

StateProbabilityRange — Minimum and maximum probability of each state
[0.05 0.1; 0.95 0.9] (default) | 2-by-2 matrix

Minimum and maximum probability of each state, specified as a 2-by-2 matrix. For example, if you
specify the input as [pminG, pminB; pmaxG, pmaxB], then:

* pminG and pmaxG represent the minimum and maximum values of state probability in good state.

* pminB and pmaxB represent the minimum and maximum values of state probability in bad state.

The minimum probability must be less than the maximum probability in a state. The value of each
element must be in range [0, 1].

Dependencies

To enable this property, set the Environment property to "Custom".

Data Types: double

ChannelFiltering — Channel filtering
true or 1 (default) | falseor 0

Channel filtering, specified as one of these logical values.

* 1 (true) — The object accepts an input signal and produces a filtered output signal, in addition to
the channel path gains, sample times, and state series.

* 0 (false) — The object does not accept an input signal, produces no filtered output signal, and
outputs only channel path gains, sample times, and state series. You must specify the duration of
the fading process by using the NumSamples property, and the sampling rate by using the
SampleRate property.

Data Types: logical

NumSamples — Number of time samples
7680 (default) | nonnegative integer

Number of time samples used to set the duration of the fading process realization, specified as a
nonnegative integer.

Tunable: Yes

4-89

4 System Objects

4-90

Dependencies

To enable this property, set ChannelFiltering property to false.
Data Types: double

OutputDataType — Data type of step method outputs
"double" (default) | "single"

Data type of step method outputs, specified as one of these values.
* "double"
*+ "single"
Dependencies

To enable this property, set ChannelFiltering property to false.
Data Types: char | string

FadingTechnique — Channel model fading technique
"Filtered Gaussian noise" (default) | "Sum of sinusoids"

Channel model fading technique, specified as "Filtered Gaussian noise" or "Sum of
sinusoids".

Data Types: char | string

NumSinusoids — Number of sinusoids used

48 (default) | positive integer

Number of sinusoids used to generate the Doppler fading samples, specified as a positive integer.

Dependencies

To enable this property, set the FadingTechnique property to "Sum of sinusoids".
Data Types: double | uint16

RandomStream — Source of random number stream
"Global stream" (default) | "mt19937ar with seed"

Source of the random number stream, specified as "Global stream" or "mt19937ar with
seed".

* When you specify "Global stream", the object uses the current global random number stream
for uniformly and normally distributed random number generation. In this case, the reset object
function resets only the filters.

* When you specify "mt19937ar with seed", the object uses the mt19937ar algorithm for
uniformly and normally distributed random number generation. In this case, the reset object
function resets the filters and reinitializes the random number stream to the value of the Seed
property.

Data Types: char | string

Seed — Initial seed
73 (default) | nonnegative integer

p681LMSChannel

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer. When you call the reset object function, it reinitializes the mt19937ar random number
stream to the Seed value.

Dependencies

To enable this property, set the RandomStream property to "mt19937ar with seed".
Data Types: double | uint32
Visualization — Channel visualization

"Off" (default) | "Impulse response" | "Frequency response” | "Impulse and frequency
responses” | "Doppler spectrum"

Channel visualization, specified as one of these options.

° n Off n

* "Impulse response"

* "Frequency response"

+ "Impulse and frequency responses"

* "Doppler spectrum"

When you set this property to enable the visualization, selected channel characteristics are animated
in separate figures, with each System object call.

For more information, see the “Channel Visualization” on page 4-98 section.

Data Types: char | string

Usage

Syntax

[pathgains,sampletimes,stateseries] = chan()
[y,pathgains,sampletimes,stateseries] = chan(x)

Description

[pathgains,sampletimes,stateseries] = chan() produces path gains, pathgains, sample
times, sampletimes, and state series, stateseries for an ITU-R P681-11 LMS flat fading channel.

In this case, the System object acts as a source of path gains, sample times, and state series.

Specify the duration of the fading process by using the NumSamples property. Specify the datatype of
outputs using the OutputDataType property.

Note This syntax is applicable when you set the ChannelFiltering property to false.

[y,pathgains,sampletimes,stateseries] = chan(x) filters the input signal, x, through an
ITU-R P681-11 LMS flat fading channel, and returns the output channel-impaired signal in y, in
addition to the outputs in the previous syntax.

4-91

4 System Objects

4-92

Note This syntax is applicable when you set the ChannelFiltering property to true.

Input Arguments

x — Input signal

Ng-by-1 vector

Input signal, specified as an Ng-by-1 vector, where N is the number of input samples.
Data Types: single | double

Complex Number Support: Yes

Output Arguments

y — Output signal
Ng-by-1 vector

Output signal, returned as an Ng-by-1 vector of complex values with the same data precision and
length as the input signal x. Ng is the number of input samples.

Data Types: single | double
Complex Number Support: Yes

pathgains — Channel path gains of fading process
Ng-by-1 vector

Channel path gains of fading process, returned as an Ng-by-1 vector of complex values.

* When you set the ChannelFiltering property to true, pathgains is of the same data precision as
the input signal x, and Ny is the number of input samples.

* When you set the ChannelFiltering property to false, pathgains is of the same data precision
as the OutputDataType property and N is equal to the NumSamples property.

Data Types: single | double
Complex Number Support: Yes

sampletimes — Sample times of channel snapshots
Ng-by-1 vector

Sample times of channel snapshots, returned as an Ng-by-1 vector.

* When you set the ChannelFiltering property to true, sampletimes is of the same data precision
as the input signal x, and Ny is the number of input samples.

* When you set the ChannelFiltering property to false, sampletimes is of the same data precision
as the OutputDataType property and N is equal to the NumSamples property.
Data Types: single | double

stateseries — State series of channel
Ng-by-1 vector

State series of the channel, returned as an Ng-by-1 vector. Each value of this vector describes the
state in which channel is present for that channel snapshot. A value of 0 represents bad state. A value
of 1 represents good state. A value between 0 and 1 represents a state transition.

p681LMSChanne

* When you set the ChannelFiltering property to true, stateseries is of the same data precision
as the input signal x, and Ny is the number of input samples.

* When you set the ChannelFiltering property to false, stateseries is of the same data precision
as the OutputDataType property and N is equal to the NumSamples property.

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to p681LMSChannel

info Characteristic information about object

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

isLocked Determine if System object is in use

reset Reset internal states of System object

Examples

Transmit Signal Through P.681-11 LMS Channel
Create and Configure the Channel

Create an ITU-R P681-11 LMS channel and configure it for a suburban scenario with a carrier
frequency of 20 GHz and an elevation angle of 50 degrees. Set the sample rate to 6000 kHz.

Specify the mobile terminal speed to 50 m/s, with an azimuth orientation of 20 degrees.

chan = p681LMSChannel;

chan.SampleRate = 6e€6; % Hz
chan.CarrierFrequency = 20e9; % Hz
chan.ElevationAngle = 50; % degrees
chan.Environment = "Suburban";
chan.MobileSpeed = 50; % m/s
chan.AzimuthOrientation = 20; % degrees

Display the channel characteristics.
disp(chan)
p681LMSChannel with properties:

SampleRate: 6000000
InitialState: "Good"

4-93

4 System Objects

CarrierFrequency: 2.0000e+10
ElevationAngle: 50
MobileSpeed: 50
AzimuthOrientation: 20
Environment: "Suburban"
ChannelFiltering: true

Use get to show all properties
Transmit Input Signal Through Channel
Set the random number generation seed as default.
rng("default")
Generate a random QPSK-modulated input signal.

numSamples
txWaveform

6e6;
pskmod(randi([0@ 3],numSamples,1),4); % Modulation order = 4

Filter the signal through the channel.
[rxWaveform, pathGains, sampleTimes,stateSeries] = chan(txWaveform);

Visualize Space Series and State Series

Plot the space series as a function of time.

figure % Create figure window
subplot(2,1,1)

plot(sampleTimes,20*1ogl0(abs(pathGains)))

title('Space Series')

xlabel('Time (in s)")

ylabel('Path Gain (in dB)"')

grid on

Plot the state series as a function of time.

subplot(2,1,2)
plot(sampleTimes, stateSeries)
title('State Series')
xlabel('Time (in s)')
ylabel('State')

grid on

4-94

p681LMSChanne

0 Space Series
B 20t
=
% Ank
48]
i
w60 -
o
_8{] i i i i i i i i i
0 01 02 0.3 04 05 06 o7 08 09 1
Time (in =)
State Series
1 T i T T T T i T T
|II ||"||]
08+ f A | i
I I f
| |
[k] 06| |I \ || II .
E I|I II II II
D04t | - | !
III |I || I|
02} | { \ | .
|I |I ||| |
{] i | i i i i i J i |I i
0 01 02 0.3 04 05 06 o7 048 09 1
Time (in s)

Plot Doppler Spectrum for P.681-11 LMS Channel
Define the channel configuration using a p681LMSChannel System object and specify its properties

Set the visualization as Doppler spectrum and disable the channel filtering.

chan = p681LMSChannel;
chan.SampleRate = 450000; % Hz
chan.CarrierFrequency = 11le9; % Hz
% degrees
% m/s

chan.ElevationAngle = 50;

chan.MobileSpeed = 20;
chan.Visualization = "Doppler spectrum";

chan.ChannelFiltering = false;
chan.NumSamples = 4e7;

Display the channel characteristics.

disp(chan)
p681LMSChannel with properties:

450000

SampleRate:
IIGOOdII

InitialState:
CarrierFrequency:
ElevationAngle:
MobileSpeed:

1.1000e+10

¢ 50

20

4-95

4 System Objects

AzimuthOrientation: 0
Environment: "Urban"
ChannelFiltering: false
NumSamples: 40000000
OutputDataType: "double"

Use get to show all properties

Get the path gains, sample times, and state series of the channel. Also, observe the Doppler
spectrum.

[pathGains,sampleTimes,stateSeries] = chan();

-1000

Get P.681-11 LMS Channel Information
Get channel information from a p681LMSChannel System object by using the info object function.

Create an ITU-R P681-11 LMS channel System object and specify its properties.
chan = p681LMSChannel;

chan.SampleRate = 10e3; % Hz
chan.MobileSpeed = 2; % m/s
chan.Environment = "RuralWooded";

disp(chan)
p681LMSChannel with properties:

SampleRate: 10000
InitialState: "Good"

4-96

p681LMSChanne

CarrierFrequency: 2.2000e+09
ElevationAngle: 45
MobileSpeed: 2
AzimuthOrientation: 0
Environment: "RuralWooded"
ChannelFiltering: true

Use get to show all properties
QPSK-modulate a random input signal, and then pass it through the channel.
numSamples 2e4;

txWaveform pskmod(randi([0 3],numSamples,l),4);
[rxWaveform,pathGains, sampleTimes,stateSeries] = chan(txWaveform);

Get the characteristic information about the P681-11 LMS channel.
info(chan)

ans = struct with fields:
PathDelays: 0
ChannelFilterDelay: 0
ChannelFilterCoefficients: 1
2

NumSamplesProcessed: 20000

Transmit another QPSK-modulated random input signal through the channel

numSamples?2 3e4;
txWaveform2 pskmod(randi([0@ 31,numSamples2,1),4);
[rxWaveform2,pathGains2,sampleTimes2,stateSeries2] = chan(txWaveform2);

Observe the change in number of samples processed.

info(chan)

ans = struct with fields:
PathDelays: 0

ChannelFilterDelay: 0

1

5

ChannelFilterCoefficients:

NumSamplesProcessed: 50000

Algorithms
Doppler Phenomena

To calculate the Doppler spread and Doppler shift due to the movement of the mobile on Earth, refer
to these formulas.

* The maximum Doppler spread due to mobile movement is given by the following formula:

F, mob_max_spread = (Vmob™fe) 1 €

where:

4-97

4 System Objects

* Vo is the speed of the mobile terminal on Earth in m/s, specified as the MobileSpeed property.
* f.is the carrier frequency in Hz, specified by the CarrierFrequency property.
* cis the speed of light in free space in m/s, specified as physconst (' lightspeed').

* The Doppler shift due to mobile movement is given by the following formula:

fdmob = Fmob_max_spread * cosd(0) * cosd(e)
where:

* Finob max spread 1S the maximum Doppler spread due to mobile movement.

* 0O is the path elevation angle to the satellite in degrees, specified by the ElevationAngle
property.

* (@ is the azimuth orientation in degrees, specified by the AzimuthOrientation property.

The maximum Doppler shift caused by the movement of the mobile must be less than one-tenth of
Sample Rate property.

Channel Visualization

The p681LMSChannel System object enables visualization of the channel impulse response,
frequency response, and Doppler spectrum.

* The Doppler spectrum plot displays the empirically determined spectrum from the path gains of
the channel. The Doppler spectrum values are in dB.

When there is no mobile movement, the channel is static channel. The empirical data is displayed
as a line for the case of nonstatic channels and as a point for static channels. Before the empirical
plot is updated, the internal buffer must be completely filled with the required number of channel
samples. The empirical plot is the running mean of the spectrum that is calculated from each full
buffer. For nonstatic channels, the number of input samples that is needed before the next update
is displayed in the status bar located at the bottom of plot. The number of samples that is needed
is a function of the sample rate and the maximum Doppler shift depending on mobile movement.
For static channels, the text "Reset fading channel for next update" is displayed.

4-98

p681LMSChannel

Nonstatic Channel

4-99

4 System Objects

4-100

Static Channel

* For channel impulse and frequency visualizations, see “Channel Visualization”.

Version History
Introduced in R2022a

References

[1]1 ITU-R Recommendation P.681-11 (08/2019). “Propagation data required for the design systems in
the land mobile-satellite service.” P Series; Radiowave propagation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Code generation is available only when the Visualization property is "Off".
* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

p681LMSChannel

See Also
etsiRicianChannel | comm.RayleighChannel

Topics
“Simulate and Visualize Land Mobile-Satellite Channel”

4-101

	Apps
	Satellite Link Budget Analyzer

	Functions
	bocmod
	ccsdsRSEncode
	ccsdsRSDecode
	ccsdsSCPPMEncode
	ccsdsSCPPMDecode
	ccsdsTCIdealReceiver
	dvbrcs2TurboEncode
	dvbrcs2TurboDecode
	dvbs2BitRecover
	dvbs2xBitRecover
	gnssBitSynchronize
	gnssCACode
	p618PropagationLosses
	p618SiteDiversityOutage
	ccsdsTCWaveform
	dvbrcs2BitRecover
	flushFilter
	info
	read
	reset
	satelliteCNR
	satellite
	conicalSensor
	play
	pointAt
	camroll
	campitch
	campos
	camheading
	camheight
	camtarget
	hideAll
	showAll
	accessPercentage
	linkPercentage
	linkStatus
	linkIntervals
	aer
	accessIntervals
	orbitalElements
	accessStatus
	states
	gimbalAngles
	show
	hide
	ebno
	access
	groundStation
	transmitter
	receiver
	gimbal
	fieldOfView
	link
	gaussianAntenna
	groundTrack
	pattern
	advance
	restart
	sigstrength

	Objects
	ccsdsTCConfig
	dvbrcs2RecoveryConfig
	Pattern
	p618Config
	p618SiteDiversityConfig
	satelliteCNRConfig
	vita49Reader
	Access
	ConicalSensor
	FieldOfView
	Gimbal
	GroundTrack
	GroundStation
	Link
	Receiver
	satelliteScenario
	satelliteScenarioViewer
	Satellite
	Transmitter
	skyplot
	SkyPlotChart

	System Objects
	ccsdsTMWaveformGenerator
	dvbrcs2WaveformGenerator
	dvbs2WaveformGenerator
	dvbs2xWaveformGenerator
	etsiRicianChannel
	gpsPCode
	lutzLMSChannel
	p681LMSChannel

